/* * The MurmurHash3 algorithm was created by Austin Appleby and placed in the public domain. This java port was authored * by Yonik Seeley and also placed into the public domain. The author hereby disclaims copyright to this source code. *
This produces exactly the same hash values as the final C++ version of MurmurHash3 and is thus suitable for * producing the same hash values across platforms.
The 32 bit x86 version of this hash should be the fastest * variant for relatively short keys like ids. murmurhash3_x64_128 is a good choice for longer strings or if you need * more than 32 bits of hash.
Note - The x86 and x64 versions do _not_ produce the same results, as the algorithms * are optimized for their respective platforms.
See http://github.com/yonik/java_util for future updates to this * file. Special Thanks to Austin Appleby and Yonik Seeley for placing this in the public domain and therefore allowing * me to use it! */ package bartworks.util; public final class MurmurHash3 { public static int fmix32(int h) { h ^= h >>> 16; h *= 0x85ebca6b; h ^= h >>> 13; h *= 0xc2b2ae35; h ^= h >>> 16; return h; } public static long fmix64(long k) { k ^= k >>> 33; k *= 0xff51afd7ed558ccdL; k ^= k >>> 33; k *= 0xc4ceb9fe1a85ec53L; k ^= k >>> 33; return k; } /** * Gets a long from a byte buffer in little endian byte order. */ public static long getLongLittleEndian(byte[] buf, int offset) { return (long) buf[offset + 7] << 56 // no mask needed | (buf[offset + 6] & 0xffL) << 48 | (buf[offset + 5] & 0xffL) << 40 | (buf[offset + 4] & 0xffL) << 32 | (buf[offset + 3] & 0xffL) << 24 | (buf[offset + 2] & 0xffL) << 16 | (buf[offset + 1] & 0xffL) << 8 | buf[offset] & 0xffL; // no shift needed } /** * Returns the MurmurHash3_x86_32 hash. */ public static int murmurhash3_x86_32(byte[] data, int offset, int len, int seed) { final int c1 = 0xcc9e2d51; final int c2 = 0x1b873593; int h1 = seed; int roundedEnd = offset + (len & 0xfffffffc); // round down to 4 byte block for (int i = offset; i < roundedEnd; i += 4) { // little endian load order int k1 = data[i] & 0xff | (data[i + 1] & 0xff) << 8 | (data[i + 2] & 0xff) << 16 | data[i + 3] << 24; k1 *= c1; k1 = k1 << 15 | k1 >>> 17; // ROTL32(k1,15); k1 *= c2; h1 ^= k1; h1 = h1 << 13 | h1 >>> 19; // ROTL32(h1,13); h1 = h1 * 5 + 0xe6546b64; } // tail int k1 = 0; switch (len & 0x03) { case 3: k1 = (data[roundedEnd + 2] & 0xff) << 16; // fallthrough case 2: k1 |= (data[roundedEnd + 1] & 0xff) << 8; // fallthrough case 1: k1 |= data[roundedEnd] & 0xff; k1 *= c1; k1 = k1 << 15 | k1 >>> 17; // ROTL32(k1,15); k1 *= c2; h1 ^= k1; } // finalization h1 ^= len; // fmix(h1); h1 ^= h1 >>> 16; h1 *= 0x85ebca6b; h1 ^= h1 >>> 13; h1 *= 0xc2b2ae35; h1 ^= h1 >>> 16; return h1; } /** * Returns the MurmurHash3_x86_32 hash of the UTF-8 bytes of the String without actually encoding the string to a * temporary buffer. This is more than 2x faster than hashing the result of String.getBytes(). */ public static int murmurhash3_x86_32(CharSequence data, int offset, int len, int seed) { final int c1 = 0xcc9e2d51; final int c2 = 0x1b873593; int h1 = seed; int pos = offset; int end = offset + len; int k1 = 0; int k2 = 0; int shift = 0; int bits = 0; int nBytes = 0; // length in UTF8 bytes while (pos < end) { int code = data.charAt(pos); pos++; if (code < 0x80) { k2 = code; bits = 8; /*** * // optimized ascii implementation (currently slower!!! code size?) if (shift == 24) { k1 = k1 | (code * << 24); *
* k1 *= c1; k1 = (k1 << 15) | (k1 >>> 17); // ROTL32(k1,15); k1 *= c2; *
* h1 ^= k1; h1 = (h1 << 13) | (h1 >>> 19); // ROTL32(h1,13); h1 = h1*5+0xe6546b64; *
* shift = 0; nBytes += 4; k1 = 0; } else { k1 |= code << shift; shift += 8; } continue; ***/ } else if (code < 0x800) { k2 = 0xC0 | code >> 6 | (0x80 | code & 0x3F) << 8; bits = 16; } else if (code < 0xD800 || code > 0xDFFF || pos >= end) { // we check for pos>=end to encode an unpaired surrogate as 3 bytes. k2 = 0xE0 | code >> 12 | (0x80 | code >> 6 & 0x3F) << 8 | (0x80 | code & 0x3F) << 16; bits = 24; } else { // surrogate pair // int utf32 = pos < end ? (int) data.charAt(pos++) : 0; int utf32 = data.charAt(pos++); utf32 = (code - 0xD7C0 << 10) + (utf32 & 0x3FF); k2 = 0xff & (0xF0 | utf32 >> 18) | (0x80 | utf32 >> 12 & 0x3F) << 8 | (0x80 | utf32 >> 6 & 0x3F) << 16 | (0x80 | utf32 & 0x3F) << 24; bits = 32; } k1 |= k2 << shift; shift += bits; if (shift >= 32) { // mix after we have a complete word k1 *= c1; k1 = k1 << 15 | k1 >>> 17; // ROTL32(k1,15); k1 *= c2; h1 ^= k1; h1 = h1 << 13 | h1 >>> 19; // ROTL32(h1,13); h1 = h1 * 5 + 0xe6546b64; shift -= 32; // unfortunately, java won't let you shift 32 bits off, so we need to check for 0 if (shift != 0) { k1 = k2 >>> bits - shift; // bits used == bits - newshift } else { k1 = 0; } nBytes += 4; } } // inner // handle tail if (shift > 0) { nBytes += shift >> 3; k1 *= c1; k1 = k1 << 15 | k1 >>> 17; // ROTL32(k1,15); k1 *= c2; h1 ^= k1; } // finalization h1 ^= nBytes; // fmix(h1); h1 ^= h1 >>> 16; h1 *= 0x85ebca6b; h1 ^= h1 >>> 13; h1 *= 0xc2b2ae35; h1 ^= h1 >>> 16; return h1; } /** * Returns the MurmurHash3_x64_128 hash, placing the result in "out". */ public static void murmurhash3_x64_128(byte[] key, int offset, int len, int seed, LongPair out) { // The original algorithm does have a 32 bit unsigned seed. // We have to mask to match the behavior of the unsigned types and prevent sign extension. long h1 = seed & 0x00000000FFFFFFFFL; long h2 = seed & 0x00000000FFFFFFFFL; final long c1 = 0x87c37b91114253d5L; final long c2 = 0x4cf5ad432745937fL; int roundedEnd = offset + (len & 0xFFFFFFF0); // round down to 16 byte block for (int i = offset; i < roundedEnd; i += 16) { long k1 = getLongLittleEndian(key, i); long k2 = getLongLittleEndian(key, i + 8); k1 *= c1; k1 = Long.rotateLeft(k1, 31); k1 *= c2; h1 ^= k1; h1 = Long.rotateLeft(h1, 27); h1 += h2; h1 = h1 * 5 + 0x52dce729; k2 *= c2; k2 = Long.rotateLeft(k2, 33); k2 *= c1; h2 ^= k2; h2 = Long.rotateLeft(h2, 31); h2 += h1; h2 = h2 * 5 + 0x38495ab5; } long k1 = 0; long k2 = 0; switch (len & 15) { case 15: k2 = (key[roundedEnd + 14] & 0xffL) << 48; case 14: k2 |= (key[roundedEnd + 13] & 0xffL) << 40; case 13: k2 |= (key[roundedEnd + 12] & 0xffL) << 32; case 12: k2 |= (key[roundedEnd + 11] & 0xffL) << 24; case 11: k2 |= (key[roundedEnd + 10] & 0xffL) << 16; case 10: k2 |= (key[roundedEnd + 9] & 0xffL) << 8; case 9: k2 |= key[roundedEnd + 8] & 0xffL; k2 *= c2; k2 = Long.rotateLeft(k2, 33); k2 *= c1; h2 ^= k2; case 8: k1 = (long) key[roundedEnd + 7] << 56; case 7: k1 |= (key[roundedEnd + 6] & 0xffL) << 48; case 6: k1 |= (key[roundedEnd + 5] & 0xffL) << 40; case 5: k1 |= (key[roundedEnd + 4] & 0xffL) << 32; case 4: k1 |= (key[roundedEnd + 3] & 0xffL) << 24; case 3: k1 |= (key[roundedEnd + 2] & 0xffL) << 16; case 2: k1 |= (key[roundedEnd + 1] & 0xffL) << 8; case 1: k1 |= key[roundedEnd] & 0xffL; k1 *= c1; k1 = Long.rotateLeft(k1, 31); k1 *= c2; h1 ^= k1; } // ---------- // finalization h1 ^= len; h2 ^= len; h1 += h2; h2 += h1; h1 = fmix64(h1); h2 = fmix64(h2); h1 += h2; h2 += h1; out.val1 = h1; out.val2 = h2; } /** * 128 bits of state */ public static final class LongPair { public long val1; public long val2; } }