/*
 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

// -*- C++ -*-
// Program for unpacking specially compressed Java packages.
// John R. Rose

/*
 * When compiling for a 64bit LP64 system (longs and pointers being 64bits),
 *    the printf format %ld is correct and use of %lld will cause warning
 *    errors from some compilers (gcc/g++).
 * _LP64 can be explicitly set (used on Linux).
 * Solaris compilers will define __sparcv9 or __x86_64 on 64bit compilations.
 */
#if defined(_LP64) || defined(__sparcv9) || defined(__x86_64)
#define LONG_LONG_FORMAT "%ld"
#define LONG_LONG_HEX_FORMAT "%lx"
#else
#define LONG_LONG_FORMAT "%lld"
#define LONG_LONG_HEX_FORMAT "%016llx"
#endif

#include <sys/types.h>

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <assert.h>
#include <limits.h>
#include <time.h>
#include <stdint.h>

#include "defines.h"
#include "bytes.h"
#include "utils.h"
#include "coding.h"
#include "bands.h"

#include "constants.h"

#include "zip.h"

#include "unpack.h"

// tags, in canonical order:
static const byte TAGS_IN_ORDER[] = {
	CONSTANT_Utf8,		CONSTANT_Integer,  CONSTANT_Float,	 CONSTANT_Long,
	CONSTANT_Double,	  CONSTANT_String,   CONSTANT_Class,	 CONSTANT_Signature,
	CONSTANT_NameandType, CONSTANT_Fieldref, CONSTANT_Methodref, CONSTANT_InterfaceMethodref};
#define N_TAGS_IN_ORDER (sizeof TAGS_IN_ORDER)

// REQUESTED must be -2 for u2 and REQUESTED_LDC must be -1 for u1
enum
{
	NOT_REQUESTED = 0,
	REQUESTED = -2,
	REQUESTED_LDC = -1
};

#define NO_INORD ((uint32_t) - 1)

struct entry
{
	byte tag;
	unsigned short nrefs; // pack w/ tag

	int outputIndex;
	uint32_t inord; // &cp.entries[cp.tag_base[this->tag]+this->inord] == this

	entry **refs;

	// put last to pack best
	union
	{
		bytes b;
		int i;
		int64_t l;
	} value;

	void requestOutputIndex(constant_pool &cp, int req = REQUESTED);
	int getOutputIndex()
	{
		assert(outputIndex > NOT_REQUESTED);
		return outputIndex;
	}

	entry *ref(int refnum)
	{
		assert((uint32_t)refnum < nrefs);
		return refs[refnum];
	}

	const char *utf8String()
	{
		assert(tagMatches(CONSTANT_Utf8));
		assert(value.b.len == strlen((const char *)value.b.ptr));
		return (const char *)value.b.ptr;
	}

	entry *className()
	{
		assert(tagMatches(CONSTANT_Class));
		return ref(0);
	}

	entry *memberClass()
	{
		assert(tagMatches(CONSTANT_Member));
		return ref(0);
	}

	entry *memberDescr()
	{
		assert(tagMatches(CONSTANT_Member));
		return ref(1);
	}

	entry *descrName()
	{
		assert(tagMatches(CONSTANT_NameandType));
		return ref(0);
	}

	entry *descrType()
	{
		assert(tagMatches(CONSTANT_NameandType));
		return ref(1);
	}

	int typeSize();

	bytes &asUtf8();
	int asInteger()
	{
		assert(tag == CONSTANT_Integer);
		return value.i;
	}

	bool isUtf8(bytes &b)
	{
		return tagMatches(CONSTANT_Utf8) && value.b.equals(b);
	}

	bool isDoubleWord()
	{
		return tag == CONSTANT_Double || tag == CONSTANT_Long;
	}

	bool tagMatches(byte tag2)
	{
		return (tag2 == tag) || (tag2 == CONSTANT_Utf8 && tag == CONSTANT_Signature) ||
			   (tag2 == CONSTANT_Literal && tag >= CONSTANT_Integer && tag <= CONSTANT_String &&
				tag != CONSTANT_Class) ||
			   (tag2 == CONSTANT_Member && tag >= CONSTANT_Fieldref &&
				tag <= CONSTANT_InterfaceMethodref);
	}
};

entry *cpindex::get(uint32_t i)
{
	if (i >= len)
		return nullptr;
	else if (base1 != nullptr)
		// primary index
		return &base1[i];
	else
		// secondary index
		return base2[i];
}

inline bytes &entry::asUtf8()
{
	assert(tagMatches(CONSTANT_Utf8));
	return value.b;
}

int entry::typeSize()
{
	assert(tagMatches(CONSTANT_Utf8));
	const char *sigp = (char *)value.b.ptr;
	switch (*sigp)
	{
	case '(':
		sigp++;
		break; // skip opening '('
	case 'D':
	case 'J':
		return 2; // double field
	default:
		return 1; // field
	}
	int siglen = 0;
	for (;;)
	{
		int ch = *sigp++;
		switch (ch)
		{
		case 'D':
		case 'J':
			siglen += 1;
			break;
		case '[':
			// Skip rest of array info.
			while (ch == '[')
			{
				ch = *sigp++;
			}
			if (ch != 'L')
				break;
		// else fall through
		case 'L':
			sigp = strchr(sigp, ';');
			if (sigp == nullptr)
			{
				unpack_abort("bad data");
				return 0;
			}
			sigp += 1;
			break;
		case ')': // closing ')'
			return siglen;
		}
		siglen += 1;
	}
}

inline cpindex *constant_pool::getFieldIndex(entry *classRef)
{
	assert(classRef->tagMatches(CONSTANT_Class));
	assert((uint32_t)classRef->inord < (uint32_t)tag_count[CONSTANT_Class]);
	return &member_indexes[classRef->inord * 2 + 0];
}
inline cpindex *constant_pool::getMethodIndex(entry *classRef)
{
	assert(classRef->tagMatches(CONSTANT_Class));
	assert((uint32_t)classRef->inord < (uint32_t)tag_count[CONSTANT_Class]);
	return &member_indexes[classRef->inord * 2 + 1];
}

struct inner_class
{
	entry *inner;
	entry *outer;
	entry *name;
	int flags;
	inner_class *next_sibling;
	bool requested;
};

// Here is where everything gets deallocated:
void unpacker::free()
{
	int i;
	if (jarout != nullptr)
		jarout->reset();
	if (gzin != nullptr)
	{
		gzin->free();
		gzin = nullptr;
	}
	if (free_input)
		input.free();
	/*
	 * free everybody ever allocated with U_NEW or (recently) with T_NEW
	 */
	assert(smallbuf.base() == nullptr || mallocs.contains(smallbuf.base()));
	assert(tsmallbuf.base() == nullptr || tmallocs.contains(tsmallbuf.base()));
	mallocs.freeAll();
	tmallocs.freeAll();
	smallbuf.init();
	tsmallbuf.init();
	bcimap.free();
	class_fixup_type.free();
	class_fixup_offset.free();
	class_fixup_ref.free();
	code_fixup_type.free();
	code_fixup_offset.free();
	code_fixup_source.free();
	requested_ics.free();
	cur_classfile_head.free();
	cur_classfile_tail.free();
	for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
		attr_defs[i].free();

	// free CP state
	cp.outputEntries.free();
	for (i = 0; i < CONSTANT_Limit; i++)
		cp.tag_extras[i].free();
}

// input handling
// Attempts to advance rplimit so that (rplimit-rp) is at least 'more'.
// Will eagerly read ahead by larger chunks, if possible.
// Returns false if (rplimit-rp) is not at least 'more',
// unless rplimit hits input.limit().
bool unpacker::ensure_input(int64_t more)
{
	uint64_t want = more - input_remaining();
	if ((int64_t)want <= 0)
		return true; // it's already in the buffer
	if (rplimit == input.limit())
		return true; // not expecting any more

	if (read_input_fn == nullptr)
	{
		// assume it is already all there
		bytes_read += input.limit() - rplimit;
		rplimit = input.limit();
		return true;
	}

	uint64_t remaining = (input.limit() - rplimit); // how much left to read?
	byte *rpgoal = (want >= remaining) ? input.limit() : rplimit + (size_t)want;
	enum
	{
		CHUNK_SIZE = (1 << 14)
	};
	uint64_t fetch = want;
	if (fetch < CHUNK_SIZE)
		fetch = CHUNK_SIZE;
	if (fetch > remaining * 3 / 4)
		fetch = remaining;
	// Try to fetch at least "more" bytes.
	while ((int64_t)fetch > 0)
	{
		int64_t nr = (*read_input_fn)(this, rplimit, fetch, remaining);
		if (nr <= 0)
		{
			return (rplimit >= rpgoal);
		}
		remaining -= nr;
		rplimit += nr;
		fetch -= nr;
		bytes_read += nr;
		assert(remaining == (uint64_t)(input.limit() - rplimit));
	}
	return true;
}

// output handling

fillbytes *unpacker::close_output(fillbytes *which)
{
	assert(wp != nullptr);
	if (which == nullptr)
	{
		if (wpbase == cur_classfile_head.base())
		{
			which = &cur_classfile_head;
		}
		else
		{
			which = &cur_classfile_tail;
		}
	}
	assert(wpbase == which->base());
	assert(wplimit == which->end());
	which->setLimit(wp);
	wp = nullptr;
	wplimit = nullptr;
	// wpbase = nullptr;
	return which;
}

// maybe_inline
void unpacker::ensure_put_space(size_t size)
{
	if (wp + size <= wplimit)
		return;
	// Determine which segment needs expanding.
	fillbytes *which = close_output();
	byte *wp0 = which->grow(size);
	wpbase = which->base();
	wplimit = which->end();
	wp = wp0;
}

byte *unpacker::put_space(size_t size)
{
	byte *wp0 = wp;
	byte *wp1 = wp0 + size;
	if (wp1 > wplimit)
	{
		ensure_put_space(size);
		wp0 = wp;
		wp1 = wp0 + size;
	}
	wp = wp1;
	return wp0;
}

void unpacker::putu2_at(byte *wp, int n)
{
	if (n != (unsigned short)n)
	{
		unpack_abort(ERROR_OVERFLOW);
		return;
	}
	wp[0] = (n) >> 8;
	wp[1] = (n) >> 0;
}

void unpacker::putu4_at(byte *wp, int n)
{
	wp[0] = (n) >> 24;
	wp[1] = (n) >> 16;
	wp[2] = (n) >> 8;
	wp[3] = (n) >> 0;
}

void unpacker::putu8_at(byte *wp, int64_t n)
{
	putu4_at(wp + 0, (int)((uint64_t)n >> 32));
	putu4_at(wp + 4, (int)((uint64_t)n >> 0));
}

void unpacker::putu2(int n)
{
	putu2_at(put_space(2), n);
}

void unpacker::putu4(int n)
{
	putu4_at(put_space(4), n);
}

void unpacker::putu8(int64_t n)
{
	putu8_at(put_space(8), n);
}

int unpacker::putref_index(entry *e, int size)
{
	if (e == nullptr)
		return 0;
	else if (e->outputIndex > NOT_REQUESTED)
		return e->outputIndex;
	else if (e->tag == CONSTANT_Signature)
		return putref_index(e->ref(0), size);
	else
	{
		e->requestOutputIndex(cp, -size);
		// Later on we'll fix the bits.
		class_fixup_type.addByte(size);
		class_fixup_offset.add((int)wpoffset());
		class_fixup_ref.add(e);
		return 0;
	}
}

void unpacker::putref(entry *e)
{
	int oidx = putref_index(e, 2);
	putu2_at(put_space(2), oidx);
}

void unpacker::putu1ref(entry *e)
{
	int oidx = putref_index(e, 1);
	putu1_at(put_space(1), oidx);
}

// Allocation of small and large blocks.

enum
{
	CHUNK = (1 << 14),
	SMALL = (1 << 9)
};

// Call malloc.  Try to combine small blocks and free much later.
void *unpacker::alloc_heap(size_t size, bool smallOK, bool temp)
{
	if (!smallOK || size > SMALL)
	{
		void *res = must_malloc((int)size);
		(temp ? &tmallocs : &mallocs)->add(res);
		return res;
	}
	fillbytes &xsmallbuf = *(temp ? &tsmallbuf : &smallbuf);
	if (!xsmallbuf.canAppend(size + 1))
	{
		xsmallbuf.init(CHUNK);
		(temp ? &tmallocs : &mallocs)->add(xsmallbuf.base());
	}
	int growBy = (int)size;
	growBy += -growBy & 7; // round up mod 8
	return xsmallbuf.grow(growBy);
}

void unpacker::saveTo(bytes &b, byte *ptr, size_t len)
{
	b.ptr = U_NEW(byte, add_size(len, 1));
	b.len = len;
	b.copyFrom(ptr, len);
}

// Read up through band_headers.
// Do the archive_size dance to set the size of the input mega-buffer.
void unpacker::read_file_header()
{
	// Read file header to determine file type and total size.
	enum
	{
		MAGIC_BYTES = 4,
		AH_LENGTH_0 = 3, // minver, majver, options are outside of archive_size
		AH_LENGTH_0_MAX = AH_LENGTH_0 + 1, // options might have 2 bytes
		AH_LENGTH = 26,					// maximum archive header length (w/ all fields)
		// Length contributions from optional header fields:
		AH_FILE_HEADER_LEN = 5,	// sizehi/lo/next/modtime/files
		AH_ARCHIVE_SIZE_LEN = 2,   // sizehi/lo only; part of AH_FILE_HEADER_LEN
		AH_CP_NUMBER_LEN = 4,	  // int/float/long/double
		AH_SPECIAL_FORMAT_LEN = 2, // layouts/band-headers
		AH_LENGTH_MIN =
			AH_LENGTH - (AH_FILE_HEADER_LEN + AH_SPECIAL_FORMAT_LEN + AH_CP_NUMBER_LEN),
		ARCHIVE_SIZE_MIN = AH_LENGTH_MIN - (AH_LENGTH_0 + AH_ARCHIVE_SIZE_LEN),
		FIRST_READ = MAGIC_BYTES + AH_LENGTH_MIN
	};

	assert(AH_LENGTH_MIN == 15);	// # of UNSIGNED5 fields required after archive_magic
	assert(ARCHIVE_SIZE_MIN == 10); // # of UNSIGNED5 fields required after archive_size
	// An absolute minimum nullptr archive is magic[4], {minver,majver,options}[3],
	// archive_size[0], cp_counts[8], class_counts[4], for a total of 19 bytes.
	// (Note that archive_size is optional; it may be 0..10 bytes in length.)
	// The first read must capture everything up through the options field.
	// This happens to work even if {minver,majver,options} is a pathological
	// 15 bytes long.  Legal pack files limit those three fields to 1+1+2 bytes.
	assert(FIRST_READ >= MAGIC_BYTES + AH_LENGTH_0 * B_MAX);

	// Up through archive_size, the largest possible archive header is
	// magic[4], {minver,majver,options}[4], archive_size[10].
	// (Note only the low 12 bits of options are allowed to be non-zero.)
	// In order to parse archive_size, we need at least this many bytes
	// in the first read.  Of course, if archive_size_hi is more than
	// a byte, we probably will fail to allocate the buffer, since it
	// will be many gigabytes long.  This is a practical, not an
	// architectural limit to Pack200 archive sizes.
	assert(FIRST_READ >= MAGIC_BYTES + AH_LENGTH_0_MAX + 2 * B_MAX);

	bool foreign_buf = (read_input_fn == nullptr);
	byte initbuf[(int)FIRST_READ + (int)C_SLOP + 200]; // 200 is for JAR I/O
	if (foreign_buf)
	{
		// inbytes is all there is
		input.set(inbytes);
		rp = input.base();
		rplimit = input.limit();
	}
	else
	{
		// inbytes, if not empty, contains some read-ahead we must use first
		// ensure_input will take care of copying it into initbuf,
		// then querying read_input_fn for any additional data needed.
		// However, the caller must assume that we use up all of inbytes.
		// There is no way to tell the caller that we used only part of them.
		// Therefore, the caller must use only a bare minimum of read-ahead.
		if (inbytes.len > FIRST_READ)
		{
			unpack_abort("too much read-ahead");
		}
		input.set(initbuf, sizeof(initbuf));
		input.b.clear();
		input.b.copyFrom(inbytes);
		rplimit = rp = input.base();
		rplimit += inbytes.len;
		bytes_read += inbytes.len;
	}
	// Read only 19 bytes, which is certain to contain #archive_options fields,
	// but is certain not to overflow past the archive_header.
	input.b.len = FIRST_READ;
	if (!ensure_input(FIRST_READ))
		unpack_abort("EOF reading archive magic number");

	if (rp[0] == 'P' && rp[1] == 'K')
	{
		// In the Unix-style program, we simply simulate a copy command.
		// Copy until EOF; assume the JAR file is the last segment.
		fprintf(stderr, "Copy-mode.\n");
		for (;;)
		{
			jarout->write_data(rp, (int)input_remaining());
			if (foreign_buf)
				break; // one-time use of a passed in buffer
			if (input.size() < CHUNK)
			{
				// Get some breathing room.
				input.set(U_NEW(byte, (size_t)CHUNK + C_SLOP), (size_t)CHUNK);
			}
			rp = rplimit = input.base();
			if (!ensure_input(1))
				break;
		}
		jarout->closeJarFile(false);
		return;
	}

	// Read the magic number.
	magic = 0;
	for (int i1 = 0; i1 < (int)sizeof(magic); i1++)
	{
		magic <<= 8;
		magic += (*rp++ & 0xFF);
	}

	// Read the first 3 values from the header.
	value_stream hdr;
	int hdrVals = 0;
	int hdrValsSkipped = 0; // debug only
	hdr.init(rp, rplimit, UNSIGNED5_spec);
	minver = hdr.getInt();
	majver = hdr.getInt();
	hdrVals += 2;

	if (magic != (int)JAVA_PACKAGE_MAGIC ||
		(majver != JAVA5_PACKAGE_MAJOR_VERSION && majver != JAVA6_PACKAGE_MAJOR_VERSION) ||
		(minver != JAVA5_PACKAGE_MINOR_VERSION && minver != JAVA6_PACKAGE_MINOR_VERSION))
	{
		char message[200];
		sprintf(message, "@" ERROR_FORMAT ": magic/ver = "
						 "%08X/%d.%d should be %08X/%d.%d OR %08X/%d.%d\n",
				magic, majver, minver, JAVA_PACKAGE_MAGIC, JAVA5_PACKAGE_MAJOR_VERSION,
				JAVA5_PACKAGE_MINOR_VERSION, JAVA_PACKAGE_MAGIC, JAVA6_PACKAGE_MAJOR_VERSION,
				JAVA6_PACKAGE_MINOR_VERSION);
		unpack_abort(message);
	}

	archive_options = hdr.getInt();
	hdrVals += 1;
	assert(hdrVals == AH_LENGTH_0); // first three fields only

#define ORBIT(bit) | (bit)
	int OPTION_LIMIT = (0 ARCHIVE_BIT_DO(ORBIT));
#undef ORBIT
	if ((archive_options & ~OPTION_LIMIT) != 0)
	{
		fprintf(stderr, "Warning: Illegal archive options 0x%x\n", archive_options);
		unpack_abort("illegal archive options");
		return;
	}

	if ((archive_options & AO_HAVE_FILE_HEADERS) != 0)
	{
		uint32_t hi = hdr.getInt();
		uint32_t lo = hdr.getInt();
		uint64_t x = band::makeLong(hi, lo);
		archive_size = (size_t)x;
		if (archive_size != x)
		{
			// Silly size specified; force overflow.
			archive_size = PSIZE_MAX + 1;
		}
		hdrVals += 2;
	}
	else
	{
		hdrValsSkipped += 2;
	}

	// Now we can size the whole archive.
	// Read everything else into a mega-buffer.
	rp = hdr.rp;
	int header_size_0 = (int)(rp - input.base()); // used-up header (4byte + 3int)
	int header_size_1 = (int)(rplimit - rp);	  // buffered unused initial fragment
	int header_size = header_size_0 + header_size_1;
	unsized_bytes_read = header_size_0;
	if (foreign_buf)
	{
		if (archive_size > (size_t)header_size_1)
		{
			unpack_abort("EOF reading fixed input buffer");
			return;
		}
	}
	else if (archive_size != 0)
	{
		if (archive_size < ARCHIVE_SIZE_MIN)
		{
			unpack_abort("impossible archive size"); // bad input data
			return;
		}
		if (archive_size < (size_t)header_size_1)
		{
			unpack_abort("too much read-ahead"); // somehow we pre-fetched too much?
			return;
		}
		input.set(U_NEW(byte, add_size(header_size_0, archive_size, C_SLOP)),
				  (size_t)header_size_0 + archive_size);
		assert(input.limit()[0] == 0);
		// Move all the bytes we read initially into the real buffer.
		input.b.copyFrom(initbuf, header_size);
		rp = input.b.ptr + header_size_0;
		rplimit = input.b.ptr + header_size;
	}
	else
	{
		// It's more complicated and painful.
		// A zero archive_size means that we must read until EOF.
		input.init(CHUNK * 2);
		input.b.len = input.allocated;
		rp = rplimit = input.base();
		// Set up input buffer as if we already read the header:
		input.b.copyFrom(initbuf, header_size);
		rplimit += header_size;
		while (ensure_input(input.limit() - rp))
		{
			size_t dataSoFar = input_remaining();
			size_t nextSize = add_size(dataSoFar, CHUNK);
			input.ensureSize(nextSize);
			input.b.len = input.allocated;
			rp = rplimit = input.base();
			rplimit += dataSoFar;
		}
		size_t dataSize = (rplimit - input.base());
		input.b.len = dataSize;
		input.grow(C_SLOP);
		free_input = true; // free it later
		input.b.len = dataSize;
		assert(input.limit()[0] == 0);
		rp = rplimit = input.base();
		rplimit += dataSize;
		rp += header_size_0; // already scanned these bytes...
	}
	live_input = true; // mark as "do not reuse"

	// read the rest of the header fields
	ensure_input((AH_LENGTH - AH_LENGTH_0) * B_MAX);
	hdr.rp = rp;
	hdr.rplimit = rplimit;

	if ((archive_options & AO_HAVE_FILE_HEADERS) != 0)
	{
		archive_next_count = hdr.getInt();
		if (archive_next_count < 0)
			unpack_abort("bad archive_next_count");
		archive_modtime = hdr.getInt();
		file_count = hdr.getInt();
		if (file_count < 0)
			unpack_abort("bad file_count");
		hdrVals += 3;
	}
	else
	{
		hdrValsSkipped += 3;
	}

	if ((archive_options & AO_HAVE_SPECIAL_FORMATS) != 0)
	{
		band_headers_size = hdr.getInt();
		if (band_headers_size < 0)
			unpack_abort("bad band_headers_size");
		attr_definition_count = hdr.getInt();
		if (attr_definition_count < 0)
			unpack_abort("bad attr_definition_count");
		hdrVals += 2;
	}
	else
	{
		hdrValsSkipped += 2;
	}

	int cp_counts[N_TAGS_IN_ORDER];
	for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++)
	{
		if (!(archive_options & AO_HAVE_CP_NUMBERS))
		{
			switch (TAGS_IN_ORDER[k])
			{
			case CONSTANT_Integer:
			case CONSTANT_Float:
			case CONSTANT_Long:
			case CONSTANT_Double:
				cp_counts[k] = 0;
				hdrValsSkipped += 1;
				continue;
			}
		}
		cp_counts[k] = hdr.getInt();
		if (cp_counts[k] < 0)
			unpack_abort("bad cp_counts");
		hdrVals += 1;
	}

	ic_count = hdr.getInt();
	if (ic_count < 0)
		unpack_abort("bad ic_count");

	default_class_minver = hdr.getInt();
	default_class_majver = hdr.getInt();

	class_count = hdr.getInt();
	if (class_count < 0)
		unpack_abort("bad class_count");

	hdrVals += 4;

	// done with archive_header
	hdrVals += hdrValsSkipped;
	assert(hdrVals == AH_LENGTH);

	rp = hdr.rp;
	if (rp > rplimit)
		unpack_abort("EOF reading archive header");

	// Now size the CP.
	cp.init(this, cp_counts);

	default_file_modtime = archive_modtime;
	if (default_file_modtime == 0 && !(archive_options & AO_HAVE_FILE_MODTIME))
		default_file_modtime = DEFAULT_ARCHIVE_MODTIME; // taken from driver
	if ((archive_options & AO_DEFLATE_HINT) != 0)
		default_file_options |= FO_DEFLATE_HINT;

	// meta-bytes, if any, immediately follow archive header
	// band_headers.readData(band_headers_size);
	ensure_input(band_headers_size);
	if (input_remaining() < (size_t)band_headers_size)
	{
		unpack_abort("EOF reading band headers");
		return;
	}
	bytes band_headers;
	// The "1+" allows an initial byte to be pushed on the front.
	band_headers.set(1 + U_NEW(byte, 1 + band_headers_size + C_SLOP), band_headers_size);

	// Start scanning band headers here:
	band_headers.copyFrom(rp, band_headers.len);
	rp += band_headers.len;
	assert(rp <= rplimit);
	meta_rp = band_headers.ptr;
	// Put evil meta-codes at the end of the band headers,
	// so we are sure to throw an error if we run off the end.
	bytes::of(band_headers.limit(), C_SLOP).clear(_meta_error);
}

void unpacker::finish()
{
	if (verbose >= 1)
	{
		fprintf(stderr, "A total of " LONG_LONG_FORMAT " bytes were read in %d segment(s).\n",
				(bytes_read_before_reset + bytes_read), segments_read_before_reset + 1);
		fprintf(stderr, "A total of " LONG_LONG_FORMAT " file content bytes were written.\n",
				(bytes_written_before_reset + bytes_written));
		fprintf(stderr,
				"A total of %d files (of which %d are classes) were written to output.\n",
				files_written_before_reset + files_written,
				classes_written_before_reset + classes_written);
	}
	if (jarout != nullptr)
		jarout->closeJarFile(true);
}

// Cf. PackageReader.readConstantPoolCounts
void constant_pool::init(unpacker *u_, int counts[NUM_COUNTS])
{
	this->u = u_;

	// Fill-pointer for CP.
	int next_entry = 0;

	// Size the constant pool:
	for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++)
	{
		byte tag = TAGS_IN_ORDER[k];
		int len = counts[k];
		tag_count[tag] = len;
		tag_base[tag] = next_entry;
		next_entry += len;
		// Detect and defend against constant pool size overflow.
		// (Pack200 forbids the sum of CP counts to exceed 2^29-1.)
		enum
		{
			CP_SIZE_LIMIT = (1 << 29),
			IMPLICIT_ENTRY_COUNT = 1 // empty Utf8 string
		};
		if (len >= (1 << 29) || len < 0 || next_entry >= CP_SIZE_LIMIT + IMPLICIT_ENTRY_COUNT)
		{
			unpack_abort("archive too large:  constant pool limit exceeded");
		}
	}

	// Close off the end of the CP:
	nentries = next_entry;

	// place a limit on future CP growth:
	int generous = 0;
	generous = add_size(generous, u->ic_count);	// implicit name
	generous = add_size(generous, u->ic_count);	// outer
	generous = add_size(generous, u->ic_count);	// outer.utf8
	generous = add_size(generous, 40);			 // WKUs, misc
	generous = add_size(generous, u->class_count); // implicit SourceFile strings
	maxentries = add_size(nentries, generous);

	// Note that this CP does not include "empty" entries
	// for longs and doubles.  Those are introduced when
	// the entries are renumbered for classfile output.

	entries = U_NEW(entry, maxentries);

	first_extra_entry = &entries[nentries];

	// Initialize the standard indexes.
	tag_count[CONSTANT_All] = nentries;
	tag_base[CONSTANT_All] = 0;
	for (int tag = 0; tag < CONSTANT_Limit; tag++)
	{
		entry *cpMap = &entries[tag_base[tag]];
		tag_index[tag].init(tag_count[tag], cpMap, tag);
	}

	// Initialize hashTab to a generous power-of-two size.
	uint32_t pow2 = 1;
	uint32_t target = maxentries + maxentries / 2; // 60% full
	while (pow2 < target)
		pow2 <<= 1;
	hashTab = U_NEW(entry *, hashTabLength = pow2);
}

static byte *store_Utf8_char(byte *cp, unsigned short ch)
{
	if (ch >= 0x001 && ch <= 0x007F)
	{
		*cp++ = (byte)ch;
	}
	else if (ch <= 0x07FF)
	{
		*cp++ = (byte)(0xC0 | ((ch >> 6) & 0x1F));
		*cp++ = (byte)(0x80 | ((ch >> 0) & 0x3F));
	}
	else
	{
		*cp++ = (byte)(0xE0 | ((ch >> 12) & 0x0F));
		*cp++ = (byte)(0x80 | ((ch >> 6) & 0x3F));
		*cp++ = (byte)(0x80 | ((ch >> 0) & 0x3F));
	}
	return cp;
}

static byte *skip_Utf8_chars(byte *cp, int len)
{
	for (;; cp++)
	{
		int ch = *cp & 0xFF;
		if ((ch & 0xC0) != 0x80)
		{
			if (len-- == 0)
				return cp;
			if (ch < 0x80 && len == 0)
				return cp + 1;
		}
	}
}

static int compare_Utf8_chars(bytes &b1, bytes &b2)
{
	int l1 = (int)b1.len;
	int l2 = (int)b2.len;
	int l0 = (l1 < l2) ? l1 : l2;
	byte *p1 = b1.ptr;
	byte *p2 = b2.ptr;
	int c0 = 0;
	for (int i = 0; i < l0; i++)
	{
		int c1 = p1[i] & 0xFF;
		int c2 = p2[i] & 0xFF;
		if (c1 != c2)
		{
			// Before returning the obvious answer,
			// check to see if c1 or c2 is part of a 0x0000,
			// which encodes as {0xC0,0x80}.  The 0x0000 is the
			// lowest-sorting Java char value, and yet it encodes
			// as if it were the first char after 0x7F, which causes
			// strings containing nulls to sort too high.  All other
			// comparisons are consistent between Utf8 and Java chars.
			if (c1 == 0xC0 && (p1[i + 1] & 0xFF) == 0x80)
				c1 = 0;
			if (c2 == 0xC0 && (p2[i + 1] & 0xFF) == 0x80)
				c2 = 0;
			if (c0 == 0xC0)
			{
				assert(((c1 | c2) & 0xC0) == 0x80); // c1 & c2 are extension chars
				if (c1 == 0x80)
					c1 = 0; // will sort below c2
				if (c2 == 0x80)
					c2 = 0; // will sort below c1
			}
			return c1 - c2;
		}
		c0 = c1; // save away previous char
	}
	// common prefix is identical; return length difference if any
	return l1 - l2;
}

// Cf. PackageReader.readUtf8Bands
void unpacker::read_Utf8_values(entry *cpMap, int len)
{
	// Implicit first Utf8 string is the empty string.
	enum
	{
		// certain bands begin with implicit zeroes
		PREFIX_SKIP_2 = 2,
		SUFFIX_SKIP_1 = 1
	};

	int i;

	// First band:  Read lengths of shared prefixes.
	if (len > PREFIX_SKIP_2)
		cp_Utf8_prefix.readData(len - PREFIX_SKIP_2);

	// Second band:  Read lengths of unshared suffixes:
	if (len > SUFFIX_SKIP_1)
		cp_Utf8_suffix.readData(len - SUFFIX_SKIP_1);

	bytes *allsuffixes = T_NEW(bytes, len);

	int nbigsuf = 0;
	fillbytes charbuf; // buffer to allocate small strings
	charbuf.init();

	// Third band:  Read the char values in the unshared suffixes:
	cp_Utf8_chars.readData(cp_Utf8_suffix.getIntTotal());
	for (i = 0; i < len; i++)
	{
		int suffix = (i < SUFFIX_SKIP_1) ? 0 : cp_Utf8_suffix.getInt();
		if (suffix < 0)
		{
			unpack_abort("bad utf8 suffix");
		}
		if (suffix == 0 && i >= SUFFIX_SKIP_1)
		{
			// chars are packed in cp_Utf8_big_chars
			nbigsuf += 1;
			continue;
		}
		bytes &chars = allsuffixes[i];
		uint32_t size3 = suffix * 3; // max Utf8 length
		bool isMalloc = (suffix > SMALL);
		if (isMalloc)
		{
			chars.malloc(size3);
		}
		else
		{
			if (!charbuf.canAppend(size3 + 1))
			{
				assert(charbuf.allocated == 0 || tmallocs.contains(charbuf.base()));
				charbuf.init(CHUNK); // Reset to new buffer.
				tmallocs.add(charbuf.base());
			}
			chars.set(charbuf.grow(size3 + 1), size3);
		}

		byte *chp = chars.ptr;
		for (int j = 0; j < suffix; j++)
		{
			unsigned short ch = cp_Utf8_chars.getInt();
			chp = store_Utf8_char(chp, ch);
		}
		// shrink to fit:
		if (isMalloc)
		{
			chars.realloc(chp - chars.ptr);
			tmallocs.add(chars.ptr); // free it later
		}
		else
		{
			int shrink = (int)(chars.limit() - chp);
			chars.len -= shrink;
			charbuf.b.len -= shrink; // ungrow to reclaim buffer space
			// Note that we did not reclaim the final '\0'.
			assert(chars.limit() == charbuf.limit() - 1);
			assert(strlen((char *)chars.ptr) == chars.len);
		}
	}
	// cp_Utf8_chars.done();

	// Fourth band:  Go back and size the specially packed strings.
	int maxlen = 0;
	cp_Utf8_big_suffix.readData(nbigsuf);
	cp_Utf8_suffix.rewind();
	for (i = 0; i < len; i++)
	{
		int suffix = (i < SUFFIX_SKIP_1) ? 0 : cp_Utf8_suffix.getInt();
		int prefix = (i < PREFIX_SKIP_2) ? 0 : cp_Utf8_prefix.getInt();
		if (prefix < 0 || prefix + suffix < 0)
		{
			unpack_abort("bad utf8 prefix");
		}
		bytes &chars = allsuffixes[i];
		if (suffix == 0 && i >= SUFFIX_SKIP_1)
		{
			suffix = cp_Utf8_big_suffix.getInt();
			assert(chars.ptr == nullptr);
			chars.len = suffix; // just a momentary hack
		}
		else
		{
			assert(chars.ptr != nullptr);
		}
		if (maxlen < prefix + suffix)
		{
			maxlen = prefix + suffix;
		}
	}
	// cp_Utf8_suffix.done();      // will use allsuffixes[i].len (ptr!=nullptr)
	// cp_Utf8_big_suffix.done();  // will use allsuffixes[i].len

	// Fifth band(s):  Get the specially packed characters.
	cp_Utf8_big_suffix.rewind();
	for (i = 0; i < len; i++)
	{
		bytes &chars = allsuffixes[i];
		if (chars.ptr != nullptr)
			continue;				// already input
		int suffix = (int)chars.len; // pick up the hack
		uint32_t size3 = suffix * 3;
		if (suffix == 0)
			continue; // done with empty string
		chars.malloc(size3);
		byte *chp = chars.ptr;
		band saved_band = cp_Utf8_big_chars;
		cp_Utf8_big_chars.readData(suffix);
		for (int j = 0; j < suffix; j++)
		{
			unsigned short ch = cp_Utf8_big_chars.getInt();
			chp = store_Utf8_char(chp, ch);
		}
		chars.realloc(chp - chars.ptr);
		tmallocs.add(chars.ptr); // free it later
		// cp_Utf8_big_chars.done();
		cp_Utf8_big_chars = saved_band; // reset the band for the next string
	}
	cp_Utf8_big_chars.readData(0); // zero chars
								   // cp_Utf8_big_chars.done();

	// Finally, sew together all the prefixes and suffixes.
	bytes bigbuf;
	bigbuf.malloc(maxlen * 3 + 1); // max Utf8 length, plus slop for nullptr
	int prevlen = 0;			   // previous string length (in chars)
	tmallocs.add(bigbuf.ptr);	  // free after this block
	cp_Utf8_prefix.rewind();
	for (i = 0; i < len; i++)
	{
		bytes &chars = allsuffixes[i];
		int prefix = (i < PREFIX_SKIP_2) ? 0 : cp_Utf8_prefix.getInt();
		int suffix = (int)chars.len;
		byte *fillp;
		// by induction, the buffer is already filled with the prefix
		// make sure the prefix value is not corrupted, though:
		if (prefix > prevlen)
		{
			unpack_abort("utf8 prefix overflow");
			return;
		}
		fillp = skip_Utf8_chars(bigbuf.ptr, prefix);
		// copy the suffix into the same buffer:
		fillp = chars.writeTo(fillp);
		assert(bigbuf.inBounds(fillp));
		*fillp = 0; // bigbuf must contain a well-formed Utf8 string
		int length = (int)(fillp - bigbuf.ptr);
		bytes &value = cpMap[i].value.b;
		value.set(U_NEW(byte, add_size(length, 1)), length);
		value.copyFrom(bigbuf.ptr, length);
		// Index all Utf8 strings
		entry *&htref = cp.hashTabRef(CONSTANT_Utf8, value);
		if (htref == nullptr)
		{
			// Note that if two identical strings are transmitted,
			// the first is taken to be the canonical one.
			htref = &cpMap[i];
		}
		prevlen = prefix + suffix;
	}
	// cp_Utf8_prefix.done();

	// Free intermediate buffers.
	free_temps();
}

void unpacker::read_single_words(band &cp_band, entry *cpMap, int len)
{
	cp_band.readData(len);
	for (int i = 0; i < len; i++)
	{
		cpMap[i].value.i = cp_band.getInt(); // coding handles signs OK
	}
}

void unpacker::read_double_words(band &cp_bands, entry *cpMap, int len)
{
	band &cp_band_hi = cp_bands;
	band &cp_band_lo = cp_bands.nextBand();
	cp_band_hi.readData(len);
	cp_band_lo.readData(len);
	for (int i = 0; i < len; i++)
	{
		cpMap[i].value.l = cp_band_hi.getLong(cp_band_lo, true);
	}
	// cp_band_hi.done();
	// cp_band_lo.done();
}

void unpacker::read_single_refs(band &cp_band, byte refTag, entry *cpMap, int len)
{
	assert(refTag == CONSTANT_Utf8);
	cp_band.setIndexByTag(refTag);
	cp_band.readData(len);
	int indexTag = (cp_band.bn == e_cp_Class) ? CONSTANT_Class : 0;
	for (int i = 0; i < len; i++)
	{
		entry &e = cpMap[i];
		e.refs = U_NEW(entry *, e.nrefs = 1);
		entry *utf = cp_band.getRef();
		e.refs[0] = utf;
		e.value.b = utf->value.b; // copy value of Utf8 string to self
		if (indexTag != 0)
		{
			// Maintain cross-reference:
			entry *&htref = cp.hashTabRef(indexTag, e.value.b);
			if (htref == nullptr)
			{
				// Note that if two identical classes are transmitted,
				// the first is taken to be the canonical one.
				htref = &e;
			}
		}
	}
	// cp_band.done();
}

void unpacker::read_double_refs(band &cp_band, byte ref1Tag, byte ref2Tag, entry *cpMap,
								int len)
{
	band &cp_band1 = cp_band;
	band &cp_band2 = cp_band.nextBand();
	cp_band1.setIndexByTag(ref1Tag);
	cp_band2.setIndexByTag(ref2Tag);
	cp_band1.readData(len);
	cp_band2.readData(len);
	for (int i = 0; i < len; i++)
	{
		entry &e = cpMap[i];
		e.refs = U_NEW(entry *, e.nrefs = 2);
		e.refs[0] = cp_band1.getRef();
		e.refs[1] = cp_band2.getRef();
	}
	// cp_band1.done();
	// cp_band2.done();
}

// Cf. PackageReader.readSignatureBands
void unpacker::read_signature_values(entry *cpMap, int len)
{
	cp_Signature_form.setIndexByTag(CONSTANT_Utf8);
	cp_Signature_form.readData(len);
	int ncTotal = 0;
	int i;
	for (i = 0; i < len; i++)
	{
		entry &e = cpMap[i];
		entry &form = *cp_Signature_form.getRef();
		int nc = 0;

		for (const char *ncp = form.utf8String(); *ncp; ncp++)
		{
			if (*ncp == 'L')
				nc++;
		}

		ncTotal += nc;
		e.refs = U_NEW(entry *, cpMap[i].nrefs = 1 + nc);
		e.refs[0] = &form;
	}
	// cp_Signature_form.done();
	cp_Signature_classes.setIndexByTag(CONSTANT_Class);
	cp_Signature_classes.readData(ncTotal);
	for (i = 0; i < len; i++)
	{
		entry &e = cpMap[i];
		for (int j = 1; j < e.nrefs; j++)
		{
			e.refs[j] = cp_Signature_classes.getRef();
		}
	}
	// cp_Signature_classes.done();
}

// Cf. PackageReader.readConstantPool
void unpacker::read_cp()
{
	int i;

	for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++)
	{
		byte tag = TAGS_IN_ORDER[k];
		int len = cp.tag_count[tag];
		int base = cp.tag_base[tag];

		entry *cpMap = &cp.entries[base];
		for (i = 0; i < len; i++)
		{
			cpMap[i].tag = tag;
			cpMap[i].inord = i;
		}

		switch (tag)
		{
		case CONSTANT_Utf8:
			read_Utf8_values(cpMap, len);
			break;
		case CONSTANT_Integer:
			read_single_words(cp_Int, cpMap, len);
			break;
		case CONSTANT_Float:
			read_single_words(cp_Float, cpMap, len);
			break;
		case CONSTANT_Long:
			read_double_words(cp_Long_hi /*& cp_Long_lo*/, cpMap, len);
			break;
		case CONSTANT_Double:
			read_double_words(cp_Double_hi /*& cp_Double_lo*/, cpMap, len);
			break;
		case CONSTANT_String:
			read_single_refs(cp_String, CONSTANT_Utf8, cpMap, len);
			break;
		case CONSTANT_Class:
			read_single_refs(cp_Class, CONSTANT_Utf8, cpMap, len);
			break;
		case CONSTANT_Signature:
			read_signature_values(cpMap, len);
			break;
		case CONSTANT_NameandType:
			read_double_refs(cp_Descr_name /*& cp_Descr_type*/, CONSTANT_Utf8,
							 CONSTANT_Signature, cpMap, len);
			break;
		case CONSTANT_Fieldref:
			read_double_refs(cp_Field_class /*& cp_Field_desc*/, CONSTANT_Class,
							 CONSTANT_NameandType, cpMap, len);
			break;
		case CONSTANT_Methodref:
			read_double_refs(cp_Method_class /*& cp_Method_desc*/, CONSTANT_Class,
							 CONSTANT_NameandType, cpMap, len);
			break;
		case CONSTANT_InterfaceMethodref:
			read_double_refs(cp_Imethod_class /*& cp_Imethod_desc*/, CONSTANT_Class,
							 CONSTANT_NameandType, cpMap, len);
			break;
		default:
			assert(false);
			break;
		}
	}

	cp.expandSignatures();
	cp.initMemberIndexes();

#define SNAME(n, s) #s "\0"
	const char *symNames = (ALL_ATTR_DO(SNAME) "<init>");
#undef SNAME

	for (int sn = 0; sn < constant_pool::s_LIMIT; sn++)
	{
		assert(symNames[0] >= '0' && symNames[0] <= 'Z'); // sanity
		bytes name;
		name.set(symNames);
		if (name.len > 0 && name.ptr[0] != '0')
		{
			cp.sym[sn] = cp.ensureUtf8(name);
		}
		symNames += name.len + 1; // skip trailing nullptr to next name
	}

	band::initIndexes(this);
}

static band *no_bands[] = {nullptr}; // shared empty body

inline band &unpacker::attr_definitions::fixed_band(int e_class_xxx)
{
	return u->all_bands[xxx_flags_hi_bn + (e_class_xxx - e_class_flags_hi)];
}
inline band &unpacker::attr_definitions::xxx_flags_hi()
{
	return fixed_band(e_class_flags_hi);
}
inline band &unpacker::attr_definitions::xxx_flags_lo()
{
	return fixed_band(e_class_flags_lo);
}
inline band &unpacker::attr_definitions::xxx_attr_count()
{
	return fixed_band(e_class_attr_count);
}
inline band &unpacker::attr_definitions::xxx_attr_indexes()
{
	return fixed_band(e_class_attr_indexes);
}
inline band &unpacker::attr_definitions::xxx_attr_calls()
{
	return fixed_band(e_class_attr_calls);
}

inline unpacker::layout_definition *
unpacker::attr_definitions::defineLayout(int idx, entry *nameEntry, const char *layout)
{
	const char *name = nameEntry->value.b.strval();
	layout_definition *lo = defineLayout(idx, name, layout);
	lo->nameEntry = nameEntry;
	return lo;
}

unpacker::layout_definition *unpacker::attr_definitions::defineLayout(int idx, const char *name,
																	  const char *layout)
{
	assert(flag_limit != 0); // must be set up already
	if (idx >= 0)
	{
		// Fixed attr.
		if (idx >= (int)flag_limit)
			unpack_abort("attribute index too large");
		if (isRedefined(idx))
			unpack_abort("redefined attribute index");
		redef |= ((uint64_t)1 << idx);
	}
	else
	{
		idx = flag_limit + overflow_count.length();
		overflow_count.add(0); // make a new counter
	}
	layout_definition *lo = U_NEW(layout_definition, 1);
	lo->idx = idx;
	lo->name = name;
	lo->layout = layout;
	for (int adds = (idx + 1) - layouts.length(); adds > 0; adds--)
	{
		layouts.add(nullptr);
	}
	layouts.get(idx) = lo;
	return lo;
}

band **unpacker::attr_definitions::buildBands(unpacker::layout_definition *lo)
{
	int i;
	if (lo->elems != nullptr)
		return lo->bands();
	if (lo->layout[0] == '\0')
	{
		lo->elems = no_bands;
	}
	else
	{
		// Create bands for this attribute by parsing the layout.
		bool hasCallables = lo->hasCallables();
		bands_made = 0x10000; // base number for bands made
		const char *lp = lo->layout;
		lp = parseLayout(lp, lo->elems, -1);
		if (lp[0] != '\0' || band_stack.length() > 0)
		{
			unpack_abort("garbage at end of layout");
		}
		band_stack.popTo(0);

		// Fix up callables to point at their callees.
		band **bands = lo->elems;
		assert(bands == lo->bands());
		int num_callables = 0;
		if (hasCallables)
		{
			while (bands[num_callables] != nullptr)
			{
				if (bands[num_callables]->le_kind != EK_CBLE)
				{
					unpack_abort("garbage mixed with callables");
					break;
				}
				num_callables += 1;
			}
		}
		for (i = 0; i < calls_to_link.length(); i++)
		{
			band &call = *(band *)calls_to_link.get(i);
			assert(call.le_kind == EK_CALL);
			// Determine the callee.
			int call_num = call.le_len;
			if (call_num < 0 || call_num >= num_callables)
			{
				unpack_abort("bad call in layout");
				break;
			}
			band &cble = *bands[call_num];
			// Link the call to it.
			call.le_body[0] = &cble;
			// Distinguish backward calls and callables:
			assert(cble.le_kind == EK_CBLE);
			// FIXME: hit this one
			// assert(cble.le_len == call_num);
			cble.le_back |= call.le_back;
		}
		calls_to_link.popTo(0);
	}
	return lo->elems;
}

/* attribute layout language parser

  attribute_layout:
		( layout_element )* | ( callable )+
  layout_element:
		( integral | replication | union | call | reference )

  callable:
		'[' body ']'
  body:
		( layout_element )+

  integral:
		( unsigned_int | signed_int | bc_index | bc_offset | flag )
  unsigned_int:
		uint_type
  signed_int:
		'S' uint_type
  any_int:
		( unsigned_int | signed_int )
  bc_index:
		( 'P' uint_type | 'PO' uint_type )
  bc_offset:
		'O' any_int
  flag:
		'F' uint_type
  uint_type:
		( 'B' | 'H' | 'I' | 'V' )

  replication:
		'N' uint_type '[' body ']'

  union:
		'T' any_int (union_case)* '(' ')' '[' (body)? ']'
  union_case:
		'(' union_case_tag (',' union_case_tag)* ')' '[' (body)? ']'
  union_case_tag:
		( numeral | numeral '-' numeral )
  call:
		'(' numeral ')'

  reference:
		reference_type ( 'N' )? uint_type
  reference_type:
		( constant_ref | schema_ref | utf8_ref | untyped_ref )
  constant_ref:
		( 'KI' | 'KJ' | 'KF' | 'KD' | 'KS' | 'KQ' )
  schema_ref:
		( 'RC' | 'RS' | 'RD' | 'RF' | 'RM' | 'RI' )
  utf8_ref:
		'RU'
  untyped_ref:
		'RQ'

  numeral:
		'(' ('-')? (digit)+ ')'
  digit:
		( '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' )

*/

const char *unpacker::attr_definitions::parseIntLayout(const char *lp, band *&res, byte le_kind,
													   bool can_be_signed)
{
	band *b = U_NEW(band, 1);
	char le = *lp++;
	int spec = UNSIGNED5_spec;
	if (le == 'S' && can_be_signed)
	{
		// Note:  This is the last use of sign.  There is no 'EF_SIGN'.
		spec = SIGNED5_spec;
		le = *lp++;
	}
	else if (le == 'B')
	{
		spec = BYTE1_spec; // unsigned byte
	}
	b->init(u, bands_made++, spec);
	b->le_kind = le_kind;
	int le_len = 0;
	switch (le)
	{
	case 'B':
		le_len = 1;
		break;
	case 'H':
		le_len = 2;
		break;
	case 'I':
		le_len = 4;
		break;
	case 'V':
		le_len = 0;
		break;
	default:
		unpack_abort("bad layout element");
	}
	b->le_len = le_len;
	band_stack.add(b);
	res = b;
	return lp;
}

const char *unpacker::attr_definitions::parseNumeral(const char *lp, int &res)
{
	bool sgn = false;
	if (*lp == '0')
	{
		res = 0;
		return lp + 1;
	} // special case '0'
	if (*lp == '-')
	{
		sgn = true;
		lp++;
	}
	const char *dp = lp;
	int con = 0;
	while (*dp >= '0' && *dp <= '9')
	{
		int con0 = con;
		con *= 10;
		con += (*dp++) - '0';
		if (con <= con0)
		{
			con = -1;
			break;
		} //  numeral overflow
	}
	if (lp == dp)
	{
		unpack_abort("missing numeral in layout");
	}
	lp = dp;
	if (con < 0 && !(sgn && con == -con))
	{
		// (Portability note:  Misses the error if int is not 32 bits.)
		unpack_abort("numeral overflow");
	}
	if (sgn)
		con = -con;
	res = con;
	return lp;
}

band **unpacker::attr_definitions::popBody(int bs_base)
{
	// Return everything that was pushed, as a nullptr-terminated pointer array.
	int bs_limit = band_stack.length();
	if (bs_base == bs_limit)
	{
		return no_bands;
	}
	else
	{
		int nb = bs_limit - bs_base;
		band **res = U_NEW(band *, add_size(nb, 1));
		for (int i = 0; i < nb; i++)
		{
			band *b = (band *)band_stack.get(bs_base + i);
			res[i] = b;
		}
		band_stack.popTo(bs_base);
		return res;
	}
}

const char *unpacker::attr_definitions::parseLayout(const char *lp, band **&res, int curCble)
{
	int bs_base = band_stack.length();
	bool top_level = (bs_base == 0);
	band *b;
	enum
	{
		can_be_signed = true
	}; // optional arg to parseIntLayout

	for (bool done = false; !done;)
	{
		switch (*lp++)
		{
		case 'B':
		case 'H':
		case 'I':
		case 'V': // unsigned_int
		case 'S': // signed_int
			--lp; // reparse
		case 'F':
			lp = parseIntLayout(lp, b, EK_INT);
			break;
		case 'P':
		{
			int le_bci = EK_BCI;
			if (*lp == 'O')
			{
				++lp;
				le_bci = EK_BCID;
			}
			assert(*lp != 'S'); // no PSH, etc.
			lp = parseIntLayout(lp, b, EK_INT);
			b->le_bci = le_bci;
			if (le_bci == EK_BCI)
				b->defc = coding::findBySpec(BCI5_spec);
			else
				b->defc = coding::findBySpec(BRANCH5_spec);
		}
		break;
		case 'O':
			lp = parseIntLayout(lp, b, EK_INT, can_be_signed);
			b->le_bci = EK_BCO;
			b->defc = coding::findBySpec(BRANCH5_spec);
			break;
		case 'N': // replication: 'N' uint32_t '[' elem ... ']'
			lp = parseIntLayout(lp, b, EK_REPL);
			assert(*lp == '[');
			++lp;
			lp = parseLayout(lp, b->le_body, curCble);
			break;
		case 'T': // union: 'T' any_int union_case* '(' ')' '[' body ']'
			lp = parseIntLayout(lp, b, EK_UN, can_be_signed);
			{
				int union_base = band_stack.length();
				for (;;)
				{ // for each case
					band &k_case = *U_NEW(band, 1);
					band_stack.add(&k_case);
					k_case.le_kind = EK_CASE;
					k_case.bn = bands_made++;
					if (*lp++ != '(')
					{
						unpack_abort("bad union case");
						return "";
					}
					if (*lp++ != ')')
					{
						--lp; // reparse
						// Read some case values.  (Use band_stack for temp. storage.)
						int case_base = band_stack.length();
						for (;;)
						{
							int caseval = 0;
							lp = parseNumeral(lp, caseval);
							band_stack.add((void *)(size_t)caseval);
							if (*lp == '-')
							{
								// new in version 160, allow (1-5) for (1,2,3,4,5)
								if (u->majver < JAVA6_PACKAGE_MAJOR_VERSION)
								{
									unpack_abort(
										"bad range in union case label (old archive format)");
									return "";
								}
								int caselimit = caseval;
								lp++;
								lp = parseNumeral(lp, caselimit);
								if (caseval >= caselimit ||
									(uint32_t)(caselimit - caseval) > 0x10000)
								{
									// Note:  0x10000 is arbitrary implementation restriction.
									// We can remove it later if it's important to.
									unpack_abort("bad range in union case label");
								}
								for (;;)
								{
									++caseval;
									band_stack.add((void *)(size_t)caseval);
									if (caseval == caselimit)
										break;
								}
							}
							if (*lp != ',')
								break;
							lp++;
						}
						if (*lp++ != ')')
						{
							unpack_abort("bad case label");
						}
						// save away the case labels
						int ntags = band_stack.length() - case_base;
						int *tags = U_NEW(int, add_size(ntags, 1));
						k_case.le_casetags = tags;
						*tags++ = ntags;
						for (int i = 0; i < ntags; i++)
						{
							*tags++ = ptrlowbits(band_stack.get(case_base + i));
						}
						band_stack.popTo(case_base);
					}
					// Got le_casetags.  Now grab the body.
					assert(*lp == '[');
					++lp;
					lp = parseLayout(lp, k_case.le_body, curCble);
					if (k_case.le_casetags == nullptr)
						break; // done
				}
				b->le_body = popBody(union_base);
			}
			break;
		case '(': // call: '(' -?NN* ')'
		{
			band &call = *U_NEW(band, 1);
			band_stack.add(&call);
			call.le_kind = EK_CALL;
			call.bn = bands_made++;
			call.le_body = U_NEW(band *, 2); // fill in later
			int call_num = 0;
			lp = parseNumeral(lp, call_num);
			call.le_back = (call_num <= 0);
			call_num += curCble;	// numeral is self-relative offset
			call.le_len = call_num; // use le_len as scratch
			calls_to_link.add(&call);
			if (*lp++ != ')')
			{
				unpack_abort("bad call label");
			}
		}
		break;
		case 'K': // reference_type: constant_ref
		case 'R': // reference_type: schema_ref
		{
			int ixTag = CONSTANT_None;
			if (lp[-1] == 'K')
			{
				switch (*lp++)
				{
				case 'I':
					ixTag = CONSTANT_Integer;
					break;
				case 'J':
					ixTag = CONSTANT_Long;
					break;
				case 'F':
					ixTag = CONSTANT_Float;
					break;
				case 'D':
					ixTag = CONSTANT_Double;
					break;
				case 'S':
					ixTag = CONSTANT_String;
					break;
				case 'Q':
					ixTag = CONSTANT_Literal;
					break;
				}
			}
			else
			{
				switch (*lp++)
				{
				case 'C':
					ixTag = CONSTANT_Class;
					break;
				case 'S':
					ixTag = CONSTANT_Signature;
					break;
				case 'D':
					ixTag = CONSTANT_NameandType;
					break;
				case 'F':
					ixTag = CONSTANT_Fieldref;
					break;
				case 'M':
					ixTag = CONSTANT_Methodref;
					break;
				case 'I':
					ixTag = CONSTANT_InterfaceMethodref;
					break;
				case 'U':
					ixTag = CONSTANT_Utf8;
					break; // utf8_ref
				case 'Q':
					ixTag = CONSTANT_All;
					break; // untyped_ref
				}
			}
			if (ixTag == CONSTANT_None)
			{
				unpack_abort("bad reference layout");
				break;
			}
			bool nullOK = false;
			if (*lp == 'N')
			{
				nullOK = true;
				lp++;
			}
			lp = parseIntLayout(lp, b, EK_REF);
			b->defc = coding::findBySpec(UNSIGNED5_spec);
			b->initRef(ixTag, nullOK);
		}
		break;
		case '[':
		{
			// [callable1][callable2]...
			if (!top_level)
			{
				unpack_abort("bad nested callable");
				break;
			}
			curCble += 1;
			band &cble = *U_NEW(band, 1);
			band_stack.add(&cble);
			cble.le_kind = EK_CBLE;
			cble.bn = bands_made++;
			lp = parseLayout(lp, cble.le_body, curCble);
		}
		break;
		case ']':
			// Hit a closing brace.  This ends whatever body we were in.
			done = true;
			break;
		case '\0':
			// Hit a nullptr.  Also ends the (top-level) body.
			--lp; // back up, so caller can see the nullptr also
			done = true;
			break;
		default:
			unpack_abort("bad layout");
		}
	}

	// Return the accumulated bands:
	res = popBody(bs_base);
	return lp;
}

void unpacker::read_attr_defs()
{
	int i;

	// Tell each AD which attrc it is and where its fixed flags are:
	attr_defs[ATTR_CONTEXT_CLASS].attrc = ATTR_CONTEXT_CLASS;
	attr_defs[ATTR_CONTEXT_CLASS].xxx_flags_hi_bn = e_class_flags_hi;
	attr_defs[ATTR_CONTEXT_FIELD].attrc = ATTR_CONTEXT_FIELD;
	attr_defs[ATTR_CONTEXT_FIELD].xxx_flags_hi_bn = e_field_flags_hi;
	attr_defs[ATTR_CONTEXT_METHOD].attrc = ATTR_CONTEXT_METHOD;
	attr_defs[ATTR_CONTEXT_METHOD].xxx_flags_hi_bn = e_method_flags_hi;
	attr_defs[ATTR_CONTEXT_CODE].attrc = ATTR_CONTEXT_CODE;
	attr_defs[ATTR_CONTEXT_CODE].xxx_flags_hi_bn = e_code_flags_hi;

	// Decide whether bands for the optional high flag words are present.
	attr_defs[ATTR_CONTEXT_CLASS]
		.setHaveLongFlags((archive_options & AO_HAVE_CLASS_FLAGS_HI) != 0);
	attr_defs[ATTR_CONTEXT_FIELD]
		.setHaveLongFlags((archive_options & AO_HAVE_FIELD_FLAGS_HI) != 0);
	attr_defs[ATTR_CONTEXT_METHOD]
		.setHaveLongFlags((archive_options & AO_HAVE_METHOD_FLAGS_HI) != 0);
	attr_defs[ATTR_CONTEXT_CODE]
		.setHaveLongFlags((archive_options & AO_HAVE_CODE_FLAGS_HI) != 0);

	// Set up built-in attrs.
	// (The simple ones are hard-coded.  The metadata layouts are not.)
	const char *md_layout = (
// parameter annotations:
#define MDL0 "[NB[(1)]]"
		MDL0
// annotations:
#define MDL1                                                                                   \
	"[NH[(1)]]"                                                                                \
	"[RSHNH[RUH(1)]]"
			MDL1
		// member_value:
		"[TB"
		"(66,67,73,83,90)[KIH]"
		"(68)[KDH]"
		"(70)[KFH]"
		"(74)[KJH]"
		"(99)[RSH]"
		"(101)[RSHRUH]"
		"(115)[RUH]"
		"(91)[NH[(0)]]"
		"(64)["
		// nested annotation:
		"RSH"
		"NH[RUH(0)]"
		"]"
		"()[]"
		"]");

	const char *md_layout_P = md_layout;
	const char *md_layout_A = md_layout + strlen(MDL0);
	const char *md_layout_V = md_layout + strlen(MDL0 MDL1);
	assert(0 == strncmp(&md_layout_A[-3], ")]][", 4));
	assert(0 == strncmp(&md_layout_V[-3], ")]][", 4));

	for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
	{
		attr_definitions &ad = attr_defs[i];
		ad.defineLayout(X_ATTR_RuntimeVisibleAnnotations, "RuntimeVisibleAnnotations",
						md_layout_A);
		ad.defineLayout(X_ATTR_RuntimeInvisibleAnnotations, "RuntimeInvisibleAnnotations",
						md_layout_A);
		if (i != ATTR_CONTEXT_METHOD)
			continue;
		ad.defineLayout(METHOD_ATTR_RuntimeVisibleParameterAnnotations,
						"RuntimeVisibleParameterAnnotations", md_layout_P);
		ad.defineLayout(METHOD_ATTR_RuntimeInvisibleParameterAnnotations,
						"RuntimeInvisibleParameterAnnotations", md_layout_P);
		ad.defineLayout(METHOD_ATTR_AnnotationDefault, "AnnotationDefault", md_layout_V);
	}

	attr_definition_headers.readData(attr_definition_count);
	attr_definition_name.readData(attr_definition_count);
	attr_definition_layout.readData(attr_definition_count);

// Initialize correct predef bits, to distinguish predefs from new defs.
#define ORBIT(n, s) | ((uint64_t)1 << n)
	attr_defs[ATTR_CONTEXT_CLASS].predef = (0 X_ATTR_DO(ORBIT) CLASS_ATTR_DO(ORBIT));
	attr_defs[ATTR_CONTEXT_FIELD].predef = (0 X_ATTR_DO(ORBIT) FIELD_ATTR_DO(ORBIT));
	attr_defs[ATTR_CONTEXT_METHOD].predef = (0 X_ATTR_DO(ORBIT) METHOD_ATTR_DO(ORBIT));
	attr_defs[ATTR_CONTEXT_CODE].predef = (0 O_ATTR_DO(ORBIT) CODE_ATTR_DO(ORBIT));
#undef ORBIT
	// Clear out the redef bits, folding them back into predef.
	for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
	{
		attr_defs[i].predef |= attr_defs[i].redef;
		attr_defs[i].redef = 0;
	}

	// Now read the transmitted locally defined attrs.
	// This will set redef bits again.
	for (i = 0; i < attr_definition_count; i++)
	{
		int header = attr_definition_headers.getByte();
		int attrc = ADH_BYTE_CONTEXT(header);
		int idx = ADH_BYTE_INDEX(header);
		entry *name = attr_definition_name.getRef();
		entry *layout = attr_definition_layout.getRef();
		attr_defs[attrc].defineLayout(idx, name, layout->value.b.strval());
	}
}

#define NO_ENTRY_YET ((entry *)-1)

static bool isDigitString(bytes &x, int beg, int end)
{
	if (beg == end)
		return false; // nullptr string
	byte *xptr = x.ptr;
	for (int i = beg; i < end; i++)
	{
		char ch = xptr[i];
		if (!(ch >= '0' && ch <= '9'))
			return false;
	}
	return true;
}

enum
{ // constants for parsing class names
	SLASH_MIN = '.',
	SLASH_MAX = '/',
	DOLLAR_MIN = 0,
	DOLLAR_MAX = '-'};

static int lastIndexOf(int chmin, int chmax, bytes &x, int pos)
{
	byte *ptr = x.ptr;
	for (byte *cp = ptr + pos; --cp >= ptr;)
	{
		assert(x.inBounds(cp));
		if (*cp >= chmin && *cp <= chmax)
			return (int)(cp - ptr);
	}
	return -1;
}

inner_class *constant_pool::getIC(entry *inner)
{
	if (inner == nullptr)
		return nullptr;
	assert(inner->tag == CONSTANT_Class);
	if (inner->inord == NO_INORD)
		return nullptr;
	inner_class *ic = ic_index[inner->inord];
	assert(ic == nullptr || ic->inner == inner);
	return ic;
}

inner_class *constant_pool::getFirstChildIC(entry *outer)
{
	if (outer == nullptr)
		return nullptr;
	assert(outer->tag == CONSTANT_Class);
	if (outer->inord == NO_INORD)
		return nullptr;
	inner_class *ic = ic_child_index[outer->inord];
	assert(ic == nullptr || ic->outer == outer);
	return ic;
}

inner_class *constant_pool::getNextChildIC(inner_class *child)
{
	inner_class *ic = child->next_sibling;
	assert(ic == nullptr || ic->outer == child->outer);
	return ic;
}

void unpacker::read_ics()
{
	int i;
	int index_size = cp.tag_count[CONSTANT_Class];
	inner_class **ic_index = U_NEW(inner_class *, index_size);
	inner_class **ic_child_index = U_NEW(inner_class *, index_size);
	cp.ic_index = ic_index;
	cp.ic_child_index = ic_child_index;
	ics = U_NEW(inner_class, ic_count);
	ic_this_class.readData(ic_count);
	ic_flags.readData(ic_count);
	// Scan flags to get count of long-form bands.
	int long_forms = 0;
	for (i = 0; i < ic_count; i++)
	{
		int flags = ic_flags.getInt(); // may be long form!
		if ((flags & ACC_IC_LONG_FORM) != 0)
		{
			long_forms += 1;
			ics[i].name = NO_ENTRY_YET;
		}
		flags &= ~ACC_IC_LONG_FORM;
		entry *inner = ic_this_class.getRef();
		uint32_t inord = inner->inord;
		assert(inord < (uint32_t)cp.tag_count[CONSTANT_Class]);
		if (ic_index[inord] != nullptr)
		{
			unpack_abort("identical inner class");
			break;
		}
		ic_index[inord] = &ics[i];
		ics[i].inner = inner;
		ics[i].flags = flags;
		assert(cp.getIC(inner) == &ics[i]);
	}
	// ic_this_class.done();
	// ic_flags.done();
	ic_outer_class.readData(long_forms);
	ic_name.readData(long_forms);
	for (i = 0; i < ic_count; i++)
	{
		if (ics[i].name == NO_ENTRY_YET)
		{
			// Long form.
			ics[i].outer = ic_outer_class.getRefN();
			ics[i].name = ic_name.getRefN();
		}
		else
		{
			// Fill in outer and name based on inner.
			bytes &n = ics[i].inner->value.b;
			bytes pkgOuter;
			bytes number;
			bytes name;
			// Parse n into pkgOuter and name (and number).
			int dollar1, dollar2; // pointers to $ in the pattern
			// parse n = (<pkg>/)*<outer>($<number>)?($<name>)?
			int nlen = (int)n.len;
			int pkglen = lastIndexOf(SLASH_MIN, SLASH_MAX, n, nlen) + 1;
			dollar2 = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, nlen);
			if (dollar2 < 0)
			{
				unpack_abort();
			}
			assert(dollar2 >= pkglen);
			if (isDigitString(n, dollar2 + 1, nlen))
			{
				// n = (<pkg>/)*<outer>$<number>
				number = n.slice(dollar2 + 1, nlen);
				name.set(nullptr, 0);
				dollar1 = dollar2;
			}
			else if (pkglen < (dollar1 = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, dollar2 - 1)) &&
					 isDigitString(n, dollar1 + 1, dollar2))
			{
				// n = (<pkg>/)*<outer>$<number>$<name>
				number = n.slice(dollar1 + 1, dollar2);
				name = n.slice(dollar2 + 1, nlen);
			}
			else
			{
				// n = (<pkg>/)*<outer>$<name>
				dollar1 = dollar2;
				number.set(nullptr, 0);
				name = n.slice(dollar2 + 1, nlen);
			}
			if (number.ptr == nullptr)
				pkgOuter = n.slice(0, dollar1);
			else
				pkgOuter.set(nullptr, 0);

			if (pkgOuter.ptr != nullptr)
				ics[i].outer = cp.ensureClass(pkgOuter);

			if (name.ptr != nullptr)
				ics[i].name = cp.ensureUtf8(name);
		}

		// update child/sibling list
		if (ics[i].outer != nullptr)
		{
			uint32_t outord = ics[i].outer->inord;
			if (outord != NO_INORD)
			{
				assert(outord < (uint32_t)cp.tag_count[CONSTANT_Class]);
				ics[i].next_sibling = ic_child_index[outord];
				ic_child_index[outord] = &ics[i];
			}
		}
	}
	// ic_outer_class.done();
	// ic_name.done();
}

void unpacker::read_classes()
{
	class_this.readData(class_count);
	class_super.readData(class_count);
	class_interface_count.readData(class_count);
	class_interface.readData(class_interface_count.getIntTotal());

#if 0
  int i;
  // Make a little mark on super-classes.
  for (i = 0; i < class_count; i++) {
    entry* e = class_super.getRefN();
    if (e != nullptr)  e->bits |= entry::EB_SUPER;
  }
  class_super.rewind();
#endif

	// Members.
	class_field_count.readData(class_count);
	class_method_count.readData(class_count);

	int field_count = class_field_count.getIntTotal();
	int method_count = class_method_count.getIntTotal();

	field_descr.readData(field_count);
	read_attrs(ATTR_CONTEXT_FIELD, field_count);
	method_descr.readData(method_count);
	read_attrs(ATTR_CONTEXT_METHOD, method_count);
	read_attrs(ATTR_CONTEXT_CLASS, class_count);
	read_code_headers();
}

int unpacker::attr_definitions::predefCount(uint32_t idx)
{
	return isPredefined(idx) ? flag_count[idx] : 0;
}

void unpacker::read_attrs(int attrc, int obj_count)
{
	attr_definitions &ad = attr_defs[attrc];
	assert(ad.attrc == attrc);

	int i, idx, count;

	bool haveLongFlags = ad.haveLongFlags();

	band &xxx_flags_hi = ad.xxx_flags_hi();
	if (haveLongFlags)
		xxx_flags_hi.readData(obj_count);

	band &xxx_flags_lo = ad.xxx_flags_lo();
	xxx_flags_lo.readData(obj_count);

	// pre-scan flags, counting occurrences of each index bit
	uint64_t indexMask = ad.flagIndexMask(); // which flag bits are index bits?
	for (i = 0; i < obj_count; i++)
	{
		uint64_t indexBits = xxx_flags_hi.getLong(xxx_flags_lo, haveLongFlags);
		if ((indexBits & ~indexMask) > (ushort) - 1)
		{
			unpack_abort("undefined attribute flag bit");
			return;
		}
		indexBits &= indexMask; // ignore classfile flag bits
		for (idx = 0; indexBits != 0; idx++, indexBits >>= 1)
		{
			ad.flag_count[idx] += (int)(indexBits & 1);
		}
	}
	// we'll scan these again later for output:
	xxx_flags_lo.rewind();
	xxx_flags_hi.rewind();

	band &xxx_attr_count = ad.xxx_attr_count();
	// There is one count element for each 1<<16 bit set in flags:
	xxx_attr_count.readData(ad.predefCount(X_ATTR_OVERFLOW));

	band &xxx_attr_indexes = ad.xxx_attr_indexes();
	int overflowIndexCount = xxx_attr_count.getIntTotal();
	xxx_attr_indexes.readData(overflowIndexCount);
	// pre-scan attr indexes, counting occurrences of each value
	for (i = 0; i < overflowIndexCount; i++)
	{
		idx = xxx_attr_indexes.getInt();
		if (!ad.isIndex(idx))
		{
			unpack_abort("attribute index out of bounds");
			return;
		}
		ad.getCount(idx) += 1;
	}
	xxx_attr_indexes.rewind(); // we'll scan it again later for output

	// We will need a backward call count for each used backward callable.
	int backwardCounts = 0;
	for (idx = 0; idx < ad.layouts.length(); idx++)
	{
		layout_definition *lo = ad.getLayout(idx);
		if (lo != nullptr && ad.getCount(idx) != 0)
		{
			// Build the bands lazily, only when they are used.
			band **bands = ad.buildBands(lo);
			if (lo->hasCallables())
			{
				for (i = 0; bands[i] != nullptr; i++)
				{
					if (bands[i]->le_back)
					{
						assert(bands[i]->le_kind == EK_CBLE);
						backwardCounts += 1;
					}
				}
			}
		}
	}
	ad.xxx_attr_calls().readData(backwardCounts);

	// Read built-in bands.
	// Mostly, these are hand-coded equivalents to readBandData().
	switch (attrc)
	{
	case ATTR_CONTEXT_CLASS:

		count = ad.predefCount(CLASS_ATTR_SourceFile);
		class_SourceFile_RUN.readData(count);

		count = ad.predefCount(CLASS_ATTR_EnclosingMethod);
		class_EnclosingMethod_RC.readData(count);
		class_EnclosingMethod_RDN.readData(count);

		count = ad.predefCount(X_ATTR_Signature);
		class_Signature_RS.readData(count);

		ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
		ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);

		count = ad.predefCount(CLASS_ATTR_InnerClasses);
		class_InnerClasses_N.readData(count);

		count = class_InnerClasses_N.getIntTotal();
		class_InnerClasses_RC.readData(count);
		class_InnerClasses_F.readData(count);

		// Drop remaining columns wherever flags are zero:
		count -= class_InnerClasses_F.getIntCount(0);
		class_InnerClasses_outer_RCN.readData(count);
		class_InnerClasses_name_RUN.readData(count);

		count = ad.predefCount(CLASS_ATTR_ClassFile_version);
		class_ClassFile_version_minor_H.readData(count);
		class_ClassFile_version_major_H.readData(count);
		break;

	case ATTR_CONTEXT_FIELD:

		count = ad.predefCount(FIELD_ATTR_ConstantValue);
		field_ConstantValue_KQ.readData(count);

		count = ad.predefCount(X_ATTR_Signature);
		field_Signature_RS.readData(count);

		ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
		ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
		break;

	case ATTR_CONTEXT_METHOD:

		code_count = ad.predefCount(METHOD_ATTR_Code);
		// Code attrs are handled very specially below...

		count = ad.predefCount(METHOD_ATTR_Exceptions);
		method_Exceptions_N.readData(count);
		count = method_Exceptions_N.getIntTotal();
		method_Exceptions_RC.readData(count);

		count = ad.predefCount(X_ATTR_Signature);
		method_Signature_RS.readData(count);

		ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
		ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
		ad.readBandData(METHOD_ATTR_RuntimeVisibleParameterAnnotations);
		ad.readBandData(METHOD_ATTR_RuntimeInvisibleParameterAnnotations);
		ad.readBandData(METHOD_ATTR_AnnotationDefault);
		break;

	case ATTR_CONTEXT_CODE:
		// (keep this code aligned with its brother in unpacker::write_attrs)
		count = ad.predefCount(CODE_ATTR_StackMapTable);
		// disable this feature in old archives!
		if (count != 0 && majver < JAVA6_PACKAGE_MAJOR_VERSION)
		{
			unpack_abort("undefined StackMapTable attribute (old archive format)");
			return;
		}
		code_StackMapTable_N.readData(count);
		count = code_StackMapTable_N.getIntTotal();
		code_StackMapTable_frame_T.readData(count);
		// the rest of it depends in a complicated way on frame tags
		{
			int fat_frame_count = 0;
			int offset_count = 0;
			int type_count = 0;
			for (int k = 0; k < count; k++)
			{
				int tag = code_StackMapTable_frame_T.getByte();
				if (tag <= 127)
				{
					// (64-127)  [(2)]
					if (tag >= 64)
						type_count++;
				}
				else if (tag <= 251)
				{
					// (247)     [(1)(2)]
					// (248-251) [(1)]
					if (tag >= 247)
						offset_count++;
					if (tag == 247)
						type_count++;
				}
				else if (tag <= 254)
				{
					// (252)     [(1)(2)]
					// (253)     [(1)(2)(2)]
					// (254)     [(1)(2)(2)(2)]
					offset_count++;
					type_count += (tag - 251);
				}
				else
				{
					// (255)     [(1)NH[(2)]NH[(2)]]
					fat_frame_count++;
				}
			}

			// done pre-scanning frame tags:
			code_StackMapTable_frame_T.rewind();

			// deal completely with fat frames:
			offset_count += fat_frame_count;
			code_StackMapTable_local_N.readData(fat_frame_count);
			type_count += code_StackMapTable_local_N.getIntTotal();
			code_StackMapTable_stack_N.readData(fat_frame_count);
			type_count += code_StackMapTable_stack_N.getIntTotal();
			// read the rest:
			code_StackMapTable_offset.readData(offset_count);
			code_StackMapTable_T.readData(type_count);
			// (7) [RCH]
			count = code_StackMapTable_T.getIntCount(7);
			code_StackMapTable_RC.readData(count);
			// (8) [PH]
			count = code_StackMapTable_T.getIntCount(8);
			code_StackMapTable_P.readData(count);
		}

		count = ad.predefCount(CODE_ATTR_LineNumberTable);
		code_LineNumberTable_N.readData(count);
		count = code_LineNumberTable_N.getIntTotal();
		code_LineNumberTable_bci_P.readData(count);
		code_LineNumberTable_line.readData(count);

		count = ad.predefCount(CODE_ATTR_LocalVariableTable);
		code_LocalVariableTable_N.readData(count);
		count = code_LocalVariableTable_N.getIntTotal();
		code_LocalVariableTable_bci_P.readData(count);
		code_LocalVariableTable_span_O.readData(count);
		code_LocalVariableTable_name_RU.readData(count);
		code_LocalVariableTable_type_RS.readData(count);
		code_LocalVariableTable_slot.readData(count);

		count = ad.predefCount(CODE_ATTR_LocalVariableTypeTable);
		code_LocalVariableTypeTable_N.readData(count);
		count = code_LocalVariableTypeTable_N.getIntTotal();
		code_LocalVariableTypeTable_bci_P.readData(count);
		code_LocalVariableTypeTable_span_O.readData(count);
		code_LocalVariableTypeTable_name_RU.readData(count);
		code_LocalVariableTypeTable_type_RS.readData(count);
		code_LocalVariableTypeTable_slot.readData(count);
		break;
	}

	// Read compressor-defined bands.
	for (idx = 0; idx < ad.layouts.length(); idx++)
	{
		if (ad.getLayout(idx) == nullptr)
			continue; // none at this fixed index <32
		if (idx < (int)ad.flag_limit && ad.isPredefined(idx))
			continue; // already handled
		if (ad.getCount(idx) == 0)
			continue; // no attributes of this type (then why transmit layouts?)
		ad.readBandData(idx);
	}
}

void unpacker::attr_definitions::readBandData(int idx)
{
	int j;
	uint32_t count = getCount(idx);
	if (count == 0)
		return;
	layout_definition *lo = getLayout(idx);
	bool hasCallables = lo->hasCallables();
	band **bands = lo->bands();
	if (!hasCallables)
	{
		// Read through the rest of the bands in a regular way.
		readBandData(bands, count);
	}
	else
	{
		// Deal with the callables.
		// First set up the forward entry count for each callable.
		// This is stored on band::length of the callable.
		bands[0]->expectMoreLength(count);
		for (j = 0; bands[j] != nullptr; j++)
		{
			band &j_cble = *bands[j];
			assert(j_cble.le_kind == EK_CBLE);
			if (j_cble.le_back)
			{
				// Add in the predicted effects of backward calls, too.
				int back_calls = xxx_attr_calls().getInt();
				j_cble.expectMoreLength(back_calls);
				// In a moment, more forward calls may increment j_cble.length.
			}
		}
		// Now consult whichever callables have non-zero entry counts.
		readBandData(bands, (uint32_t) - 1);
	}
}

// Recursive helper to the previous function:
void unpacker::attr_definitions::readBandData(band **body, uint32_t count)
{
	int j, k;
	for (j = 0; body[j] != nullptr; j++)
	{
		band &b = *body[j];
		if (b.defc != nullptr)
		{
			// It has data, so read it.
			b.readData(count);
		}
		switch (b.le_kind)
		{
		case EK_REPL:
		{
			int reps = b.getIntTotal();
			readBandData(b.le_body, reps);
		}
		break;
		case EK_UN:
		{
			int remaining = count;
			for (k = 0; b.le_body[k] != nullptr; k++)
			{
				band &k_case = *b.le_body[k];
				int k_count = 0;
				if (k_case.le_casetags == nullptr)
				{
					k_count = remaining; // last (empty) case
				}
				else
				{
					int *tags = k_case.le_casetags;
					int ntags = *tags++; // 1st element is length (why not?)
					while (ntags-- > 0)
					{
						int tag = *tags++;
						k_count += b.getIntCount(tag);
					}
				}
				readBandData(k_case.le_body, k_count);
				remaining -= k_count;
			}
			assert(remaining == 0);
		}
		break;
		case EK_CALL:
			// Push the count forward, if it is not a backward call.
			if (!b.le_back)
			{
				band &cble = *b.le_body[0];
				assert(cble.le_kind == EK_CBLE);
				cble.expectMoreLength(count);
			}
			break;
		case EK_CBLE:
			assert((int)count == -1); // incoming count is meaningless
			k = b.length;
			assert(k >= 0);
			// This is intended and required for non production mode.
			assert((b.length = -1)); // make it unable to accept more calls now.
			readBandData(b.le_body, k);
			break;
		}
	}
}

static inline band **findMatchingCase(int matchTag, band **cases)
{
	for (int k = 0; cases[k] != nullptr; k++)
	{
		band &k_case = *cases[k];
		if (k_case.le_casetags != nullptr)
		{
			// If it has tags, it must match a tag.
			int *tags = k_case.le_casetags;
			int ntags = *tags++; // 1st element is length
			for (; ntags > 0; ntags--)
			{
				int tag = *tags++;
				if (tag == matchTag)
					break;
			}
			if (ntags == 0)
				continue; // does not match
		}
		return k_case.le_body;
	}
	return nullptr;
}

// write attribute band data:
void unpacker::putlayout(band **body)
{
	int i;
	int prevBII = -1;
	int prevBCI = -1;
	if (body == NULL)
	{
		unpack_abort("putlayout: unexpected NULL for body");
		return;
	}
	for (i = 0; body[i] != nullptr; i++)
	{
		band &b = *body[i];
		byte le_kind = b.le_kind;

		// Handle scalar part, if any.
		int x = 0;
		entry *e = nullptr;
		if (b.defc != nullptr)
		{
			// It has data, so unparse an element.
			if (b.ixTag != CONSTANT_None)
			{
				assert(le_kind == EK_REF);
				if (b.ixTag == CONSTANT_Literal)
					e = b.getRefUsing(cp.getKQIndex());
				else
					e = b.getRefN();
				switch (b.le_len)
				{
				case 0:
					break;
				case 1:
					putu1ref(e);
					break;
				case 2:
					putref(e);
					break;
				case 4:
					putu2(0);
					putref(e);
					break;
				default:
					assert(false);
				}
			}
			else
			{
				assert(le_kind == EK_INT || le_kind == EK_REPL || le_kind == EK_UN);
				x = b.getInt();

				assert(!b.le_bci || prevBCI == (int)to_bci(prevBII));
				switch (b.le_bci)
				{
				case EK_BCI: // PH:  transmit R(bci), store bci
					x = to_bci(prevBII = x);
					prevBCI = x;
					break;
				case EK_BCID: // POH: transmit D(R(bci)), store bci
					x = to_bci(prevBII += x);
					prevBCI = x;
					break;
				case EK_BCO: // OH:  transmit D(R(bci)), store D(bci)
					x = to_bci(prevBII += x) - prevBCI;
					prevBCI += x;
					break;
				}
				assert(!b.le_bci || prevBCI == (int)to_bci(prevBII));

				switch (b.le_len)
				{
				case 0:
					break;
				case 1:
					putu1(x);
					break;
				case 2:
					putu2(x);
					break;
				case 4:
					putu4(x);
					break;
				default:
					assert(false);
				}
			}
		}

		// Handle subparts, if any.
		switch (le_kind)
		{
		case EK_REPL:
			// x is the repeat count
			while (x-- > 0)
			{
				putlayout(b.le_body);
			}
			break;
		case EK_UN:
			// x is the tag
			putlayout(findMatchingCase(x, b.le_body));
			break;
		case EK_CALL:
		{
			band &cble = *b.le_body[0];
			assert(cble.le_kind == EK_CBLE);
			// FIXME: hit this one
			// assert(cble.le_len == b.le_len);
			putlayout(cble.le_body);
		}
		break;

		case EK_CBLE:
		case EK_CASE:
			assert(false); // should not reach here
		}
	}
}

void unpacker::read_files()
{
	file_name.readData(file_count);
	if ((archive_options & AO_HAVE_FILE_SIZE_HI) != 0)
		file_size_hi.readData(file_count);
	file_size_lo.readData(file_count);
	if ((archive_options & AO_HAVE_FILE_MODTIME) != 0)
		file_modtime.readData(file_count);
	int allFiles = file_count + class_count;
	if ((archive_options & AO_HAVE_FILE_OPTIONS) != 0)
	{
		file_options.readData(file_count);
		// FO_IS_CLASS_STUB might be set, causing overlap between classes and files
		for (int i = 0; i < file_count; i++)
		{
			if ((file_options.getInt() & FO_IS_CLASS_STUB) != 0)
			{
				allFiles -= 1; // this one counts as both class and file
			}
		}
		file_options.rewind();
	}
	assert((default_file_options & FO_IS_CLASS_STUB) == 0);
	files_remaining = allFiles;
}

void unpacker::get_code_header(int &max_stack, int &max_na_locals, int &handler_count,
							   int &cflags)
{
	int sc = code_headers.getByte();
	if (sc == 0)
	{
		max_stack = max_na_locals = handler_count = cflags = -1;
		return;
	}
	// Short code header is the usual case:
	int nh;
	int mod;
	if (sc < 1 + 12 * 12)
	{
		sc -= 1;
		nh = 0;
		mod = 12;
	}
	else if (sc < 1 + 12 * 12 + 8 * 8)
	{
		sc -= 1 + 12 * 12;
		nh = 1;
		mod = 8;
	}
	else
	{
		assert(sc < 1 + 12 * 12 + 8 * 8 + 7 * 7);
		sc -= 1 + 12 * 12 + 8 * 8;
		nh = 2;
		mod = 7;
	}
	max_stack = sc % mod;
	max_na_locals = sc / mod; // caller must add static, siglen
	handler_count = nh;
	if ((archive_options & AO_HAVE_ALL_CODE_FLAGS) != 0)
		cflags = -1;
	else
		cflags = 0; // this one has no attributes
}

// Cf. PackageReader.readCodeHeaders
void unpacker::read_code_headers()
{
	code_headers.readData(code_count);
	int totalHandlerCount = 0;
	int totalFlagsCount = 0;
	for (int i = 0; i < code_count; i++)
	{
		int max_stack, max_locals, handler_count, cflags;
		get_code_header(max_stack, max_locals, handler_count, cflags);
		if (max_stack < 0)
			code_max_stack.expectMoreLength(1);
		if (max_locals < 0)
			code_max_na_locals.expectMoreLength(1);
		if (handler_count < 0)
			code_handler_count.expectMoreLength(1);
		else
			totalHandlerCount += handler_count;
		if (cflags < 0)
			totalFlagsCount += 1;
	}
	code_headers.rewind(); // replay later during writing

	code_max_stack.readData();
	code_max_na_locals.readData();
	code_handler_count.readData();
	totalHandlerCount += code_handler_count.getIntTotal();

	// Read handler specifications.
	// Cf. PackageReader.readCodeHandlers.
	code_handler_start_P.readData(totalHandlerCount);
	code_handler_end_PO.readData(totalHandlerCount);
	code_handler_catch_PO.readData(totalHandlerCount);
	code_handler_class_RCN.readData(totalHandlerCount);

	read_attrs(ATTR_CONTEXT_CODE, totalFlagsCount);
}

static inline bool is_in_range(uint32_t n, uint32_t min, uint32_t max)
{
	return n - min <= max - min; // unsigned arithmetic!
}
static inline bool is_field_op(int bc)
{
	return is_in_range(bc, bc_getstatic, bc_putfield);
}
static inline bool is_invoke_init_op(int bc)
{
	return is_in_range(bc, _invokeinit_op, _invokeinit_limit - 1);
}
static inline bool is_self_linker_op(int bc)
{
	return is_in_range(bc, _self_linker_op, _self_linker_limit - 1);
}
static bool is_branch_op(int bc)
{
	return is_in_range(bc, bc_ifeq, bc_jsr) || is_in_range(bc, bc_ifnull, bc_jsr_w);
}
static bool is_local_slot_op(int bc)
{
	return is_in_range(bc, bc_iload, bc_aload) || is_in_range(bc, bc_istore, bc_astore) ||
		   bc == bc_iinc || bc == bc_ret;
}
band *unpacker::ref_band_for_op(int bc)
{
	switch (bc)
	{
	case bc_ildc:
	case bc_ildc_w:
		return &bc_intref;
	case bc_fldc:
	case bc_fldc_w:
		return &bc_floatref;
	case bc_lldc2_w:
		return &bc_longref;
	case bc_dldc2_w:
		return &bc_doubleref;
	case bc_aldc:
	case bc_aldc_w:
		return &bc_stringref;
	case bc_cldc:
	case bc_cldc_w:
		return &bc_classref;

	case bc_getstatic:
	case bc_putstatic:
	case bc_getfield:
	case bc_putfield:
		return &bc_fieldref;

	case bc_invokevirtual:
	case bc_invokespecial:
	case bc_invokestatic:
		return &bc_methodref;
	case bc_invokeinterface:
		return &bc_imethodref;

	case bc_new:
	case bc_anewarray:
	case bc_checkcast:
	case bc_instanceof:
	case bc_multianewarray:
		return &bc_classref;
	}
	return nullptr;
}

band *unpacker::ref_band_for_self_op(int bc, bool &isAloadVar, int &origBCVar)
{
	if (!is_self_linker_op(bc))
		return nullptr;
	int idx = (bc - _self_linker_op);
	bool isSuper = (idx >= _self_linker_super_flag);
	if (isSuper)
		idx -= _self_linker_super_flag;
	bool isAload = (idx >= _self_linker_aload_flag);
	if (isAload)
		idx -= _self_linker_aload_flag;
	int origBC = _first_linker_op + idx;
	bool isField = is_field_op(origBC);
	isAloadVar = isAload;
	origBCVar = _first_linker_op + idx;
	if (!isSuper)
		return isField ? &bc_thisfield : &bc_thismethod;
	else
		return isField ? &bc_superfield : &bc_supermethod;
}

// Cf. PackageReader.readByteCodes
inline // called exactly once => inline
	void
unpacker::read_bcs()
{
	// read from bc_codes and bc_case_count
	fillbytes all_switch_ops;
	all_switch_ops.init();

	// Read directly from rp/rplimit.
	// Do this later:  bc_codes.readData(...)
	byte *rp0 = rp;

	band *bc_which;
	byte *opptr = rp;
	byte *oplimit = rplimit;

	bool isAload; // passed by ref and then ignored
	int junkBC;   // passed by ref and then ignored
	for (int k = 0; k < code_count; k++)
	{
		// Scan one method:
		for (;;)
		{
			if (opptr + 2 > oplimit)
			{
				rp = opptr;
				ensure_input(2);
				oplimit = rplimit;
				rp = rp0; // back up
			}
			if (opptr == oplimit)
			{
				unpack_abort();
			}
			int bc = *opptr++ & 0xFF;
			bool isWide = false;
			if (bc == bc_wide)
			{
				if (opptr == oplimit)
				{
					unpack_abort();
				}
				bc = *opptr++ & 0xFF;
				isWide = true;
			}
			// Adjust expectations of various band sizes.
			switch (bc)
			{
			case bc_tableswitch:
			case bc_lookupswitch:
				all_switch_ops.addByte(bc);
				break;
			case bc_iinc:
				bc_local.expectMoreLength(1);
				bc_which = isWide ? &bc_short : &bc_byte;
				bc_which->expectMoreLength(1);
				break;
			case bc_sipush:
				bc_short.expectMoreLength(1);
				break;
			case bc_bipush:
				bc_byte.expectMoreLength(1);
				break;
			case bc_newarray:
				bc_byte.expectMoreLength(1);
				break;
			case bc_multianewarray:
				assert(ref_band_for_op(bc) == &bc_classref);
				bc_classref.expectMoreLength(1);
				bc_byte.expectMoreLength(1);
				break;
			case bc_ref_escape:
				bc_escrefsize.expectMoreLength(1);
				bc_escref.expectMoreLength(1);
				break;
			case bc_byte_escape:
				bc_escsize.expectMoreLength(1);
				// bc_escbyte will have to be counted too
				break;
			default:
				if (is_invoke_init_op(bc))
				{
					bc_initref.expectMoreLength(1);
					break;
				}
				bc_which = ref_band_for_self_op(bc, isAload, junkBC);
				if (bc_which != nullptr)
				{
					bc_which->expectMoreLength(1);
					break;
				}
				if (is_branch_op(bc))
				{
					bc_label.expectMoreLength(1);
					break;
				}
				bc_which = ref_band_for_op(bc);
				if (bc_which != nullptr)
				{
					bc_which->expectMoreLength(1);
					assert(bc != bc_multianewarray); // handled elsewhere
					break;
				}
				if (is_local_slot_op(bc))
				{
					bc_local.expectMoreLength(1);
					break;
				}
				break;
			case bc_end_marker:
				// Increment k and test against code_count.
				goto doneScanningMethod;
			}
		}
	doneScanningMethod:
	{
	}
	}

	// Go through the formality, so we can use it in a regular fashion later:
	assert(rp == rp0);
	bc_codes.readData((int)(opptr - rp));

	int i = 0;

	// To size instruction bands correctly, we need info on switches:
	bc_case_count.readData((int)all_switch_ops.size());
	for (i = 0; i < (int)all_switch_ops.size(); i++)
	{
		int caseCount = bc_case_count.getInt();
		int bc = all_switch_ops.getByte(i);
		bc_label.expectMoreLength(1 + caseCount); // default label + cases
		bc_case_value.expectMoreLength(bc == bc_tableswitch ? 1 : caseCount);
	}
	bc_case_count.rewind(); // uses again for output

	all_switch_ops.free();

	for (i = e_bc_case_value; i <= e_bc_escsize; i++)
	{
		all_bands[i].readData();
	}

	// The bc_escbyte band is counted by the immediately previous band.
	bc_escbyte.readData(bc_escsize.getIntTotal());
}

void unpacker::read_bands()
{
	read_file_header();

	if (cp.nentries == 0)
	{
		// read_file_header failed to read a CP, because it copied a JAR.
		return;
	}

	// Do this after the file header has been read:
	check_options();

	read_cp();
	read_attr_defs();
	read_ics();
	read_classes();
	read_bcs();
	read_files();
}

/// CP routines

entry *&constant_pool::hashTabRef(byte tag, bytes &b)
{
	uint32_t hash = tag + (int)b.len;
	for (int i = 0; i < (int)b.len; i++)
	{
		hash = hash * 31 + (0xFF & b.ptr[i]);
	}
	entry **ht = hashTab;
	int hlen = hashTabLength;
	assert((hlen & (hlen - 1)) == 0);   // must be power of 2
	uint32_t hash1 = hash & (hlen - 1); // == hash % hlen
	uint32_t hash2 = 0;				 // lazily computed (requires mod op.)
	int probes = 0;
	while (ht[hash1] != nullptr)
	{
		entry &e = *ht[hash1];
		if (e.value.b.equals(b) && e.tag == tag)
			break;
		if (hash2 == 0)
			// Note:  hash2 must be relatively prime to hlen, hence the "|1".
			hash2 = (((hash % 499) & (hlen - 1)) | 1);
		hash1 += hash2;
		if (hash1 >= (uint32_t)hlen)
			hash1 -= hlen;
		assert(hash1 < (uint32_t)hlen);
		assert(++probes < hlen);
	}
	return ht[hash1];
}

static void insert_extra(entry *e, ptrlist &extras)
{
	// This ordering helps implement the Pack200 requirement
	// of a predictable CP order in the class files produced.
	e->inord = NO_INORD; // mark as an "extra"
	extras.add(e);
	// Note:  We will sort the list (by string-name) later.
}

entry *constant_pool::ensureUtf8(bytes &b)
{
	entry *&ix = hashTabRef(CONSTANT_Utf8, b);
	if (ix != nullptr)
		return ix;
	// Make one.
	if (nentries == maxentries)
	{
		unpack_abort("cp utf8 overflow");
		return &entries[tag_base[CONSTANT_Utf8]]; // return something
	}
	entry &e = entries[nentries++];
	e.tag = CONSTANT_Utf8;
	u->saveTo(e.value.b, b);
	assert(&e >= first_extra_entry);
	insert_extra(&e, tag_extras[CONSTANT_Utf8]);
	return ix = &e;
}

entry *constant_pool::ensureClass(bytes &b)
{
	entry *&ix = hashTabRef(CONSTANT_Class, b);
	if (ix != nullptr)
		return ix;
	// Make one.
	if (nentries == maxentries)
	{
		unpack_abort("cp class overflow");
		return &entries[tag_base[CONSTANT_Class]]; // return something
	}
	entry &e = entries[nentries++];
	e.tag = CONSTANT_Class;
	e.nrefs = 1;
	e.refs = U_NEW(entry *, 1);
	ix = &e; // hold my spot in the index
	entry *utf = ensureUtf8(b);
	e.refs[0] = utf;
	e.value.b = utf->value.b;
	assert(&e >= first_extra_entry);
	insert_extra(&e, tag_extras[CONSTANT_Class]);
	return &e;
}

void constant_pool::expandSignatures()
{
	int i;
	int nsigs = 0;
	int nreused = 0;
	int first_sig = tag_base[CONSTANT_Signature];
	int sig_limit = tag_count[CONSTANT_Signature] + first_sig;
	fillbytes buf;
	buf.init(1 << 10);
	for (i = first_sig; i < sig_limit; i++)
	{
		entry &e = entries[i];
		assert(e.tag == CONSTANT_Signature);
		int refnum = 0;
		bytes form = e.refs[refnum++]->asUtf8();
		buf.empty();
		for (int j = 0; j < (int)form.len; j++)
		{
			int c = form.ptr[j];
			buf.addByte(c);
			if (c == 'L')
			{
				entry *cls = e.refs[refnum++];
				buf.append(cls->className()->asUtf8());
			}
		}
		assert(refnum == e.nrefs);
		bytes &sig = buf.b;

		// try to find a pre-existing Utf8:
		entry *&e2 = hashTabRef(CONSTANT_Utf8, sig);
		if (e2 != nullptr)
		{
			assert(e2->isUtf8(sig));
			e.value.b = e2->value.b;
			e.refs[0] = e2;
			e.nrefs = 1;
			nreused++;
		}
		else
		{
			// there is no other replacement; reuse this CP entry as a Utf8
			u->saveTo(e.value.b, sig);
			e.tag = CONSTANT_Utf8;
			e.nrefs = 0;
			e2 = &e;
		}
		nsigs++;
	}
	buf.free();

	// go expunge all references to remaining signatures:
	for (i = 0; i < (int)nentries; i++)
	{
		entry &e = entries[i];
		for (int j = 0; j < e.nrefs; j++)
		{
			entry *&e2 = e.refs[j];
			if (e2 != nullptr && e2->tag == CONSTANT_Signature)
				e2 = e2->refs[0];
		}
	}
}

void constant_pool::initMemberIndexes()
{
	// This function does NOT refer to any class schema.
	// It is totally internal to the cpool.
	int i, j;

	// Get the pre-existing indexes:
	int nclasses = tag_count[CONSTANT_Class];
	// entry *classes = tag_base[CONSTANT_Class] + entries; // UNUSED
	int nfields = tag_count[CONSTANT_Fieldref];
	entry *fields = tag_base[CONSTANT_Fieldref] + entries;
	int nmethods = tag_count[CONSTANT_Methodref];
	entry *methods = tag_base[CONSTANT_Methodref] + entries;

	int *field_counts = T_NEW(int, nclasses);
	int *method_counts = T_NEW(int, nclasses);
	cpindex *all_indexes = U_NEW(cpindex, nclasses * 2);
	entry **field_ix = U_NEW(entry *, add_size(nfields, nclasses));
	entry **method_ix = U_NEW(entry *, add_size(nmethods, nclasses));

	for (j = 0; j < nfields; j++)
	{
		entry &f = fields[j];
		i = f.memberClass()->inord;
		assert(i < nclasses);
		field_counts[i]++;
	}
	for (j = 0; j < nmethods; j++)
	{
		entry &m = methods[j];
		i = m.memberClass()->inord;
		assert(i < nclasses);
		method_counts[i]++;
	}

	int fbase = 0, mbase = 0;
	for (i = 0; i < nclasses; i++)
	{
		int fc = field_counts[i];
		int mc = method_counts[i];
		all_indexes[i * 2 + 0].init(fc, field_ix + fbase, CONSTANT_Fieldref + SUBINDEX_BIT);
		all_indexes[i * 2 + 1].init(mc, method_ix + mbase, CONSTANT_Methodref + SUBINDEX_BIT);
		// reuse field_counts and member_counts as fill pointers:
		field_counts[i] = fbase;
		method_counts[i] = mbase;
		fbase += fc + 1;
		mbase += mc + 1;
		// (the +1 leaves a space between every subarray)
	}
	assert(fbase == nfields + nclasses);
	assert(mbase == nmethods + nclasses);

	for (j = 0; j < nfields; j++)
	{
		entry &f = fields[j];
		i = f.memberClass()->inord;
		field_ix[field_counts[i]++] = &f;
	}
	for (j = 0; j < nmethods; j++)
	{
		entry &m = methods[j];
		i = m.memberClass()->inord;
		method_ix[method_counts[i]++] = &m;
	}

	member_indexes = all_indexes;

	// Free intermediate buffers.
	u->free_temps();
}

void entry::requestOutputIndex(constant_pool &cp, int req)
{
	assert(outputIndex <= NOT_REQUESTED); // must not have assigned indexes yet
	if (tag == CONSTANT_Signature)
	{
		ref(0)->requestOutputIndex(cp, req);
		return;
	}
	assert(req == REQUESTED || req == REQUESTED_LDC);
	if (outputIndex != NOT_REQUESTED)
	{
		if (req == REQUESTED_LDC)
			outputIndex = req; // this kind has precedence
		return;
	}
	outputIndex = req;
	// assert(!cp.outputEntries.contains(this));
	assert(tag != CONSTANT_Signature);
	cp.outputEntries.add(this);
	for (int j = 0; j < nrefs; j++)
	{
		ref(j)->requestOutputIndex(cp);
	}
}

void constant_pool::resetOutputIndexes()
{
	int i;
	int noes = outputEntries.length();
	entry **oes = (entry **)outputEntries.base();
	for (i = 0; i < noes; i++)
	{
		entry &e = *oes[i];
		e.outputIndex = NOT_REQUESTED;
	}
	outputIndexLimit = 0;
	outputEntries.empty();
}

static const byte TAG_ORDER[CONSTANT_Limit] = {0, 1, 0, 2, 3, 4, 5, 7, 6, 10, 11, 12, 9, 8};

extern "C" int outputEntry_cmp(const void *e1p, const void *e2p)
{
	// Sort entries according to the Pack200 rules for deterministic
	// constant pool ordering.
	//
	// The four sort keys as follows, in order of decreasing importance:
	//   1. ldc first, then non-ldc guys
	//   2. normal cp_All entries by input order (i.e., address order)
	//   3. after that, extra entries by lexical order (as in tag_extras[*])
	entry &e1 = *(entry *)*(void **)e1p;
	entry &e2 = *(entry *)*(void **)e2p;
	int oi1 = e1.outputIndex;
	int oi2 = e2.outputIndex;
	assert(oi1 == REQUESTED || oi1 == REQUESTED_LDC);
	assert(oi2 == REQUESTED || oi2 == REQUESTED_LDC);
	if (oi1 != oi2)
	{
		if (oi1 == REQUESTED_LDC)
			return 0 - 1;
		if (oi2 == REQUESTED_LDC)
			return 1 - 0;
		// Else fall through; neither is an ldc request.
	}
	if (e1.inord != NO_INORD || e2.inord != NO_INORD)
	{
		// One or both is normal.  Use input order.
		if (&e1 > &e2)
			return 1 - 0;
		if (&e1 < &e2)
			return 0 - 1;
		return 0; // equal pointers
	}
	// Both are extras.  Sort by tag and then by value.
	if (e1.tag != e2.tag)
	{
		return TAG_ORDER[e1.tag] - TAG_ORDER[e2.tag];
	}
	// If the tags are the same, use string comparison.
	return compare_Utf8_chars(e1.value.b, e2.value.b);
}

void constant_pool::computeOutputIndexes()
{
	int i;

	int noes = outputEntries.length();
	entry **oes = (entry **)outputEntries.base();

	// Sort the output constant pool into the order required by Pack200.
	PTRLIST_QSORT(outputEntries, outputEntry_cmp);

	// Allocate a new index for each entry that needs one.
	// We do this in two passes, one for LDC entries and one for the rest.
	int nextIndex = 1; // always skip index #0 in output cpool
	for (i = 0; i < noes; i++)
	{
		entry &e = *oes[i];
		assert(e.outputIndex == REQUESTED || e.outputIndex == REQUESTED_LDC);
		e.outputIndex = nextIndex++;
		if (e.isDoubleWord())
			nextIndex++; // do not use the next index
	}
	outputIndexLimit = nextIndex;
}

// Unpacker Start
// Deallocate all internal storage and reset to a clean state.
// Do not disturb any input or output connections, including
// infileptr, inbytes, read_input_fn, jarout, or errstrm.
// Do not reset any unpack options.
void unpacker::reset()
{
	bytes_read_before_reset += bytes_read;
	bytes_written_before_reset += bytes_written;
	files_written_before_reset += files_written;
	classes_written_before_reset += classes_written;
	segments_read_before_reset += 1;
	if (verbose >= 2)
	{
		fprintf(stderr, "After segment %d, " LONG_LONG_FORMAT
						" bytes read and " LONG_LONG_FORMAT " bytes written.\n",
				segments_read_before_reset - 1, bytes_read_before_reset,
				bytes_written_before_reset);
		fprintf(stderr,
				"After segment %d, %d files (of which %d are classes) written to output.\n",
				segments_read_before_reset - 1, files_written_before_reset,
				classes_written_before_reset);
		if (archive_next_count != 0)
		{
			fprintf(stderr, "After segment %d, %d segment%s remaining (estimated).\n",
					segments_read_before_reset - 1, archive_next_count,
					archive_next_count == 1 ? "" : "s");
		}
	}

	unpacker save_u = (*this); // save bytewise image
	infileptr = nullptr;	   // make asserts happy
	jarout = nullptr;		  // do not close the output jar
	gzin = nullptr;			// do not close the input gzip stream
	this->free();
	this->init(read_input_fn);

	// restore selected interface state:
	infileptr = save_u.infileptr;
	inbytes = save_u.inbytes;
	jarout = save_u.jarout;
	gzin = save_u.gzin;
	verbose = save_u.verbose;
	deflate_hint_or_zero = save_u.deflate_hint_or_zero;
	modification_time_or_zero = save_u.modification_time_or_zero;
	bytes_read_before_reset = save_u.bytes_read_before_reset;
	bytes_written_before_reset = save_u.bytes_written_before_reset;
	files_written_before_reset = save_u.files_written_before_reset;
	classes_written_before_reset = save_u.classes_written_before_reset;
	segments_read_before_reset = save_u.segments_read_before_reset;
	// Note:  If we use strip_names, watch out:  They get nuked here.
}

void unpacker::init(read_input_fn_t input_fn)
{
	int i;
	BYTES_OF(*this).clear();
	this->u = this; // self-reference for U_NEW macro
	read_input_fn = input_fn;
	all_bands = band::makeBands(this);
	// Make a default jar buffer; caller may safely overwrite it.
	jarout = U_NEW(jar, 1);
	jarout->init(this);
	for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
		attr_defs[i].u = u; // set up outer ptr
}

// Usage: unpack a byte buffer
// packptr is a reference to byte buffer containing a
// packed file and len is the length of the buffer.
// If nullptr, the callback is used to fill an internal buffer.
void unpacker::start(void *packptr, size_t len)
{
	if (packptr != nullptr && len != 0)
	{
		inbytes.set((byte *)packptr, len);
	}
	read_bands();
}

void unpacker::check_options()
{
	if (deflate_hint_or_zero != 0)
	{
		bool force_deflate_hint = (deflate_hint_or_zero > 0);
		if (force_deflate_hint)
			default_file_options |= FO_DEFLATE_HINT;
		else
			default_file_options &= ~FO_DEFLATE_HINT;
		// Turn off per-file deflate hint by force.
		suppress_file_options |= FO_DEFLATE_HINT;
	}
	if (modification_time_or_zero != 0)
	{
		default_file_modtime = modification_time_or_zero;
		// Turn off per-file modtime by force.
		archive_options &= ~AO_HAVE_FILE_MODTIME;
	}
}

// classfile writing

void unpacker::reset_cur_classfile()
{
	// set defaults
	cur_class_minver = default_class_minver;
	cur_class_majver = default_class_majver;

	// reset constant pool state
	cp.resetOutputIndexes();

	// reset fixups
	class_fixup_type.empty();
	class_fixup_offset.empty();
	class_fixup_ref.empty();
	requested_ics.empty();
}

cpindex *constant_pool::getKQIndex()
{
	char ch = '?';
	if (u->cur_descr != nullptr)
	{
		entry *type = u->cur_descr->descrType();
		ch = type->value.b.ptr[0];
	}
	byte tag = CONSTANT_Integer;
	switch (ch)
	{
	case 'L':
		tag = CONSTANT_String;
		break;
	case 'I':
		tag = CONSTANT_Integer;
		break;
	case 'J':
		tag = CONSTANT_Long;
		break;
	case 'F':
		tag = CONSTANT_Float;
		break;
	case 'D':
		tag = CONSTANT_Double;
		break;
	case 'B':
	case 'S':
	case 'C':
	case 'Z':
		tag = CONSTANT_Integer;
		break;
	default:
		unpack_abort("bad KQ reference");
		break;
	}
	return getIndex(tag);
}

uint32_t unpacker::to_bci(uint32_t bii)
{
	uint32_t len = bcimap.length();
	uint32_t *map = (uint32_t *)bcimap.base();
	assert(len > 0); // must be initialized before using to_bci
	if (bii < len)
		return map[bii];
	// Else it's a fractional or out-of-range BCI.
	uint32_t key = bii - len;
	for (int i = len;; i--)
	{
		if (map[i - 1] - (i - 1) <= key)
			break;
		else
			--bii;
	}
	return bii;
}

void unpacker::put_stackmap_type()
{
	int tag = code_StackMapTable_T.getByte();
	putu1(tag);
	switch (tag)
	{
	case 7: // (7) [RCH]
		putref(code_StackMapTable_RC.getRef());
		break;
	case 8: // (8) [PH]
		putu2(to_bci(code_StackMapTable_P.getInt()));
		break;
	}
}

// Functions for writing code.

void unpacker::put_label(int curIP, int size)
{
	code_fixup_type.addByte(size);
	code_fixup_offset.add((int)put_empty(size));
	code_fixup_source.add(curIP);
}

inline // called exactly once => inline
	void
unpacker::write_bc_ops()
{
	bcimap.empty();
	code_fixup_type.empty();
	code_fixup_offset.empty();
	code_fixup_source.empty();

	band *bc_which;

	byte *opptr = bc_codes.curRP();
	// No need for oplimit, since the codes are pre-counted.

	size_t codeBase = wpoffset();

	bool isAload; // copy-out result
	int origBC;

	entry *thisClass = cur_class;
	entry *superClass = cur_super;
	entry *newClass = nullptr; // class of last _new opcode

	// overwrite any prior index on these bands; it changes w/ current class:
	bc_thisfield.setIndex(cp.getFieldIndex(thisClass));
	bc_thismethod.setIndex(cp.getMethodIndex(thisClass));
	if (superClass != nullptr)
	{
		bc_superfield.setIndex(cp.getFieldIndex(superClass));
		bc_supermethod.setIndex(cp.getMethodIndex(superClass));
	}

	for (int curIP = 0;; curIP++)
	{
		int curPC = (int)(wpoffset() - codeBase);
		bcimap.add(curPC);
		ensure_put_space(10); // covers most instrs w/o further bounds check
		int bc = *opptr++ & 0xFF;

		putu1_fast(bc);
		// Note:  See '--wp' below for pseudo-bytecodes like bc_end_marker.

		bool isWide = false;
		if (bc == bc_wide)
		{
			bc = *opptr++ & 0xFF;
			putu1_fast(bc);
			isWide = true;
		}
		switch (bc)
		{
		case bc_end_marker:
			--wp; // not really part of the code
			assert(opptr <= bc_codes.maxRP());
			bc_codes.curRP() = opptr; // advance over this in bc_codes
			goto doneScanningMethod;
		case bc_tableswitch:  // apc:  (df, lo, hi, (hi-lo+1)*(label))
		case bc_lookupswitch: // apc:  (df, nc, nc*(case, label))
		{
			int caseCount = bc_case_count.getInt();
			while (((wpoffset() - codeBase) % 4) != 0)
				putu1_fast(0);
			ensure_put_space(30 + caseCount * 8);
			put_label(curIP, 4); // int df = bc_label.getInt();
			if (bc == bc_tableswitch)
			{
				int lo = bc_case_value.getInt();
				int hi = lo + caseCount - 1;
				putu4(lo);
				putu4(hi);
				for (int j = 0; j < caseCount; j++)
				{
					put_label(curIP, 4); // int lVal = bc_label.getInt();
										 // int cVal = lo + j;
				}
			}
			else
			{
				putu4(caseCount);
				for (int j = 0; j < caseCount; j++)
				{
					int cVal = bc_case_value.getInt();
					putu4(cVal);
					put_label(curIP, 4); // int lVal = bc_label.getInt();
				}
			}
			assert((int)to_bci(curIP) == curPC);
			continue;
		}
		case bc_iinc:
		{
			int local = bc_local.getInt();
			int delta = (isWide ? bc_short : bc_byte).getInt();
			if (isWide)
			{
				putu2(local);
				putu2(delta);
			}
			else
			{
				putu1_fast(local);
				putu1_fast(delta);
			}
			continue;
		}
		case bc_sipush:
		{
			int val = bc_short.getInt();
			putu2(val);
			continue;
		}
		case bc_bipush:
		case bc_newarray:
		{
			int val = bc_byte.getByte();
			putu1_fast(val);
			continue;
		}
		case bc_ref_escape:
		{
			// Note that insnMap has one entry for this.
			--wp; // not really part of the code
			int size = bc_escrefsize.getInt();
			entry *ref = bc_escref.getRefN();
			switch (size)
			{
			case 1:
				putu1ref(ref);
				break;
			case 2:
				putref(ref);
				break;
			default:
				assert(false);
			}
			continue;
		}
		case bc_byte_escape:
		{
			// Note that insnMap has one entry for all these bytes.
			--wp; // not really part of the code
			int size = bc_escsize.getInt();
			ensure_put_space(size);
			for (int j = 0; j < size; j++)
				putu1_fast(bc_escbyte.getByte());
			continue;
		}
		default:
			if (is_invoke_init_op(bc))
			{
				origBC = bc_invokespecial;
				entry *classRef;
				switch (bc - _invokeinit_op)
				{
				case _invokeinit_self_option:
					classRef = thisClass;
					break;
				case _invokeinit_super_option:
					classRef = superClass;
					break;
				default:
					assert(bc == _invokeinit_op + _invokeinit_new_option);
				case _invokeinit_new_option:
					classRef = newClass;
					break;
				}
				wp[-1] = origBC; // overwrite with origBC
				int coding = bc_initref.getInt();
				// Find the nth overloading of <init> in classRef.
				entry *ref = nullptr;
				cpindex *ix = (classRef == nullptr) ? nullptr : cp.getMethodIndex(classRef);
				for (int j = 0, which_init = 0;; j++)
				{
					ref = (ix == nullptr) ? nullptr : ix->get(j);
					if (ref == nullptr)
						break; // oops, bad input
					assert(ref->tag == CONSTANT_Methodref);
					if (ref->memberDescr()->descrName() == cp.sym[constant_pool::s_lt_init_gt])
					{
						if (which_init++ == coding)
							break;
					}
				}
				putref(ref);
				continue;
			}
			bc_which = ref_band_for_self_op(bc, isAload, origBC);
			if (bc_which != nullptr)
			{
				if (!isAload)
				{
					wp[-1] = origBC; // overwrite with origBC
				}
				else
				{
					wp[-1] = bc_aload_0; // overwrite with _aload_0
					// Note: insnMap keeps the _aload_0 separate.
					bcimap.add(++curPC);
					++curIP;
					putu1_fast(origBC);
				}
				entry *ref = bc_which->getRef();
				putref(ref);
				continue;
			}
			if (is_branch_op(bc))
			{
				// int lVal = bc_label.getInt();
				if (bc < bc_goto_w)
				{
					put_label(curIP, 2); // putu2(lVal & 0xFFFF);
				}
				else
				{
					assert(bc <= bc_jsr_w);
					put_label(curIP, 4); // putu4(lVal);
				}
				assert((int)to_bci(curIP) == curPC);
				continue;
			}
			bc_which = ref_band_for_op(bc);
			if (bc_which != nullptr)
			{
				entry *ref = bc_which->getRefCommon(bc_which->ix, bc_which->nullOK);
				if (ref == nullptr && bc_which == &bc_classref)
				{
					// Shorthand for class self-references.
					ref = thisClass;
				}
				origBC = bc;
				switch (bc)
				{
				case bc_ildc:
				case bc_cldc:
				case bc_fldc:
				case bc_aldc:
					origBC = bc_ldc;
					break;
				case bc_ildc_w:
				case bc_cldc_w:
				case bc_fldc_w:
				case bc_aldc_w:
					origBC = bc_ldc_w;
					break;
				case bc_lldc2_w:
				case bc_dldc2_w:
					origBC = bc_ldc2_w;
					break;
				case bc_new:
					newClass = ref;
					break;
				}
				wp[-1] = origBC; // overwrite with origBC
				if (origBC == bc_ldc)
				{
					putu1ref(ref);
				}
				else
				{
					putref(ref);
				}
				if (origBC == bc_multianewarray)
				{
					// Copy the trailing byte also.
					int val = bc_byte.getByte();
					putu1_fast(val);
				}
				else if (origBC == bc_invokeinterface)
				{
					int argSize = ref->memberDescr()->descrType()->typeSize();
					putu1_fast(1 + argSize);
					putu1_fast(0);
				}
				continue;
			}
			if (is_local_slot_op(bc))
			{
				int local = bc_local.getInt();
				if (isWide)
				{
					putu2(local);
					if (bc == bc_iinc)
					{
						int iVal = bc_short.getInt();
						putu2(iVal);
					}
				}
				else
				{
					putu1_fast(local);
					if (bc == bc_iinc)
					{
						int iVal = bc_byte.getByte();
						putu1_fast(iVal);
					}
				}
				continue;
			}
			// Random bytecode.  Just copy it.
			assert(bc < bc_bytecode_limit);
		}
	}
doneScanningMethod:
{
}
	// bcimap.add(curPC);  // PC limit is already also in map, from bc_end_marker

	// Armed with a bcimap, we can now fix up all the labels.
	for (int i = 0; i < (int)code_fixup_type.size(); i++)
	{
		int type = code_fixup_type.getByte(i);
		byte *bp = wp_at(code_fixup_offset.get(i));
		int curIP = code_fixup_source.get(i);
		int destIP = curIP + bc_label.getInt();
		int span = to_bci(destIP) - to_bci(curIP);
		switch (type)
		{
		case 2:
			putu2_at(bp, (ushort)span);
			break;
		case 4:
			putu4_at(bp, span);
			break;
		default:
			assert(false);
		}
	}
}

inline // called exactly once => inline
	void
unpacker::write_code()
{
	int j;

	int max_stack, max_locals, handler_count, cflags;
	get_code_header(max_stack, max_locals, handler_count, cflags);

	if (max_stack < 0)
		max_stack = code_max_stack.getInt();
	if (max_locals < 0)
		max_locals = code_max_na_locals.getInt();
	if (handler_count < 0)
		handler_count = code_handler_count.getInt();

	int siglen = cur_descr->descrType()->typeSize();
	if ((cur_descr_flags & ACC_STATIC) == 0)
		siglen++;
	max_locals += siglen;

	putu2(max_stack);
	putu2(max_locals);
	size_t bcbase = put_empty(4);

	// Write the bytecodes themselves.
	write_bc_ops();

	byte *bcbasewp = wp_at(bcbase);
	putu4_at(bcbasewp, (int)(wp - (bcbasewp + 4))); // size of code attr

	putu2(handler_count);
	for (j = 0; j < handler_count; j++)
	{
		int bii = code_handler_start_P.getInt();
		putu2(to_bci(bii));
		bii += code_handler_end_PO.getInt();
		putu2(to_bci(bii));
		bii += code_handler_catch_PO.getInt();
		putu2(to_bci(bii));
		putref(code_handler_class_RCN.getRefN());
	}

	uint64_t indexBits = cflags;
	if (cflags < 0)
	{
		bool haveLongFlags = attr_defs[ATTR_CONTEXT_CODE].haveLongFlags();
		indexBits = code_flags_hi.getLong(code_flags_lo, haveLongFlags);
	}
	write_attrs(ATTR_CONTEXT_CODE, indexBits);
}

int unpacker::write_attrs(int attrc, uint64_t indexBits)
{
	if (indexBits == 0)
	{
		// Quick short-circuit.
		putu2(0);
		return 0;
	}

	attr_definitions &ad = attr_defs[attrc];

	int i, j, j2, idx, count;

	int oiCount = 0;
	if (ad.isPredefined(X_ATTR_OVERFLOW) && (indexBits & ((uint64_t)1 << X_ATTR_OVERFLOW)) != 0)
	{
		indexBits -= ((uint64_t)1 << X_ATTR_OVERFLOW);
		oiCount = ad.xxx_attr_count().getInt();
	}

	int bitIndexes[X_ATTR_LIMIT_FLAGS_HI];
	int biCount = 0;

	// Fill bitIndexes with index bits, in order.
	for (idx = 0; indexBits != 0; idx++, indexBits >>= 1)
	{
		if ((indexBits & 1) != 0)
			bitIndexes[biCount++] = idx;
	}
	assert(biCount <= (int)lengthof(bitIndexes));

	// Write a provisional attribute count, perhaps to be corrected later.
	int naOffset = (int)wpoffset();
	int na0 = biCount + oiCount;
	putu2(na0);

	int na = 0;
	for (i = 0; i < na0; i++)
	{
		if (i < biCount)
			idx = bitIndexes[i];
		else
			idx = ad.xxx_attr_indexes().getInt();
		assert(ad.isIndex(idx));
		entry *aname = nullptr;
		entry *ref; // scratch
		size_t abase = put_empty(2 + 4);
		if (idx < (int)ad.flag_limit && ad.isPredefined(idx))
		{
			// Switch on the attrc and idx simultaneously.
			switch (ADH_BYTE(attrc, idx))
			{

			case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_OVERFLOW) :
			case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_OVERFLOW) :
			case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_OVERFLOW) :
			case ADH_BYTE(ATTR_CONTEXT_CODE, X_ATTR_OVERFLOW) :
				// no attribute at all, so back up on this one
				wp = wp_at(abase);
				continue;

			case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_ClassFile_version) :
				cur_class_minver = class_ClassFile_version_minor_H.getInt();
				cur_class_majver = class_ClassFile_version_major_H.getInt();
				// back up; not a real attribute
				wp = wp_at(abase);
				continue;

			case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_InnerClasses) :
				// note the existence of this attr, but save for later
				if (cur_class_has_local_ics)
					unpack_abort("too many InnerClasses attrs");
				cur_class_has_local_ics = true;
				wp = wp_at(abase);
				continue;

			case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_SourceFile) :
				aname = cp.sym[constant_pool::s_SourceFile];
				ref = class_SourceFile_RUN.getRefN();
				if (ref == nullptr)
				{
					bytes &n = cur_class->ref(0)->value.b;
					// parse n = (<pkg>/)*<outer>?($<id>)*
					int pkglen = lastIndexOf(SLASH_MIN, SLASH_MAX, n, (int)n.len) + 1;
					bytes prefix = n.slice(pkglen, n.len);
					for (;;)
					{
						// Work backwards, finding all '$', '#', etc.
						int dollar =
							lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, prefix, (int)prefix.len);
						if (dollar < 0)
							break;
						prefix = prefix.slice(0, dollar);
					}
					const char *suffix = ".java";
					int len = (int)(prefix.len + strlen(suffix));
					bytes name;
					name.set(T_NEW(byte, add_size(len, 1)), len);
					name.strcat(prefix).strcat(suffix);
					ref = cp.ensureUtf8(name);
				}
				putref(ref);
				break;

			case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_EnclosingMethod) :
				aname = cp.sym[constant_pool::s_EnclosingMethod];
				putref(class_EnclosingMethod_RC.getRefN());
				putref(class_EnclosingMethod_RDN.getRefN());
				break;

			case ADH_BYTE(ATTR_CONTEXT_FIELD, FIELD_ATTR_ConstantValue) :
				aname = cp.sym[constant_pool::s_ConstantValue];
				putref(field_ConstantValue_KQ.getRefUsing(cp.getKQIndex()));
				break;

			case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Code) :
				aname = cp.sym[constant_pool::s_Code];
				write_code();
				break;

			case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Exceptions) :
				aname = cp.sym[constant_pool::s_Exceptions];
				putu2(count = method_Exceptions_N.getInt());
				for (j = 0; j < count; j++)
				{
					putref(method_Exceptions_RC.getRefN());
				}
				break;

			case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_StackMapTable) :
				aname = cp.sym[constant_pool::s_StackMapTable];
				// (keep this code aligned with its brother in unpacker::read_attrs)
				putu2(count = code_StackMapTable_N.getInt());
				for (j = 0; j < count; j++)
				{
					int tag = code_StackMapTable_frame_T.getByte();
					putu1(tag);
					if (tag <= 127)
					{
						// (64-127)  [(2)]
						if (tag >= 64)
							put_stackmap_type();
					}
					else if (tag <= 251)
					{
						// (247)     [(1)(2)]
						// (248-251) [(1)]
						if (tag >= 247)
							putu2(code_StackMapTable_offset.getInt());
						if (tag == 247)
							put_stackmap_type();
					}
					else if (tag <= 254)
					{
						// (252)     [(1)(2)]
						// (253)     [(1)(2)(2)]
						// (254)     [(1)(2)(2)(2)]
						putu2(code_StackMapTable_offset.getInt());
						for (int k = (tag - 251); k > 0; k--)
						{
							put_stackmap_type();
						}
					}
					else
					{
						// (255)     [(1)NH[(2)]NH[(2)]]
						putu2(code_StackMapTable_offset.getInt());
						putu2(j2 = code_StackMapTable_local_N.getInt());
						while (j2-- > 0)
							put_stackmap_type();
						putu2(j2 = code_StackMapTable_stack_N.getInt());
						while (j2-- > 0)
							put_stackmap_type();
					}
				}
				break;

			case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LineNumberTable) :
				aname = cp.sym[constant_pool::s_LineNumberTable];
				putu2(count = code_LineNumberTable_N.getInt());
				for (j = 0; j < count; j++)
				{
					putu2(to_bci(code_LineNumberTable_bci_P.getInt()));
					putu2(code_LineNumberTable_line.getInt());
				}
				break;

			case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTable) :
				aname = cp.sym[constant_pool::s_LocalVariableTable];
				putu2(count = code_LocalVariableTable_N.getInt());
				for (j = 0; j < count; j++)
				{
					int bii = code_LocalVariableTable_bci_P.getInt();
					int bci = to_bci(bii);
					putu2(bci);
					bii += code_LocalVariableTable_span_O.getInt();
					putu2(to_bci(bii) - bci);
					putref(code_LocalVariableTable_name_RU.getRefN());
					putref(code_LocalVariableTable_type_RS.getRefN());
					putu2(code_LocalVariableTable_slot.getInt());
				}
				break;

			case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTypeTable) :
				aname = cp.sym[constant_pool::s_LocalVariableTypeTable];
				putu2(count = code_LocalVariableTypeTable_N.getInt());
				for (j = 0; j < count; j++)
				{
					int bii = code_LocalVariableTypeTable_bci_P.getInt();
					int bci = to_bci(bii);
					putu2(bci);
					bii += code_LocalVariableTypeTable_span_O.getInt();
					putu2(to_bci(bii) - bci);
					putref(code_LocalVariableTypeTable_name_RU.getRefN());
					putref(code_LocalVariableTypeTable_type_RS.getRefN());
					putu2(code_LocalVariableTypeTable_slot.getInt());
				}
				break;

			case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_Signature) :
				aname = cp.sym[constant_pool::s_Signature];
				putref(class_Signature_RS.getRefN());
				break;

			case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_Signature) :
				aname = cp.sym[constant_pool::s_Signature];
				putref(field_Signature_RS.getRefN());
				break;

			case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Signature) :
				aname = cp.sym[constant_pool::s_Signature];
				putref(method_Signature_RS.getRefN());
				break;

			case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_Deprecated) :
			case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_Deprecated) :
			case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Deprecated) :
				aname = cp.sym[constant_pool::s_Deprecated];
				// no data
				break;
			}
		}

		if (aname == nullptr)
		{
			// Unparse a compressor-defined attribute.
			layout_definition *lo = ad.getLayout(idx);
			if (lo == nullptr)
			{
				unpack_abort("bad layout index");
				break;
			}
			assert((int)lo->idx == idx);
			aname = lo->nameEntry;
			if (aname == nullptr)
			{
				bytes nameb;
				nameb.set(lo->name);
				aname = cp.ensureUtf8(nameb);
				// Cache the name entry for next time.
				lo->nameEntry = aname;
			}
			// Execute all the layout elements.
			band **bands = lo->bands();
			if (lo->hasCallables())
			{
				band &cble = *bands[0];
				assert(cble.le_kind == EK_CBLE);
				bands = cble.le_body;
			}
			putlayout(bands);
		}

		if (aname == nullptr)
			unpack_abort("bad attribute index");

		byte *wp1 = wp;
		wp = wp_at(abase);

		// DTRT if this attr is on the strip-list.
		// (Note that we emptied the data out of the band first.)
		if (ad.strip_names.contains(aname))
		{
			continue;
		}

		// patch the name and length
		putref(aname);
		putu4((int)(wp1 - (wp + 4))); // put the attr size
		wp = wp1;
		na++; // count the attrs actually written
	}

	if (na != na0)
		// Refresh changed count.
		putu2_at(wp_at(naOffset), na);
	return na;
}

void unpacker::write_members(int num, int attrc)
{
	attr_definitions &ad = attr_defs[attrc];
	band &member_flags_hi = ad.xxx_flags_hi();
	band &member_flags_lo = ad.xxx_flags_lo();
	band &member_descr = (&member_flags_hi)[e_field_descr - e_field_flags_hi];
	bool haveLongFlags = ad.haveLongFlags();

	putu2(num);
	uint64_t indexMask = attr_defs[attrc].flagIndexMask();
	for (int i = 0; i < num; i++)
	{
		uint64_t mflags = member_flags_hi.getLong(member_flags_lo, haveLongFlags);
		entry *mdescr = member_descr.getRef();
		cur_descr = mdescr;
		putu2(cur_descr_flags = (ushort)(mflags & ~indexMask));
		putref(mdescr->descrName());
		putref(mdescr->descrType());
		write_attrs(attrc, (mflags & indexMask));
	}
	cur_descr = nullptr;
}

extern "C" int raw_address_cmp(const void *p1p, const void *p2p)
{
	void *p1 = *(void **)p1p;
	void *p2 = *(void **)p2p;
	return (p1 > p2) ? 1 : (p1 < p2) ? -1 : 0;
}

void unpacker::write_classfile_tail()
{
	cur_classfile_tail.empty();
	set_output(&cur_classfile_tail);

	int i, num;

	attr_definitions &ad = attr_defs[ATTR_CONTEXT_CLASS];

	bool haveLongFlags = ad.haveLongFlags();
	uint64_t kflags = class_flags_hi.getLong(class_flags_lo, haveLongFlags);
	uint64_t indexMask = ad.flagIndexMask();

	cur_class = class_this.getRef();
	cur_super = class_super.getRef();

	if (cur_super == cur_class)
		cur_super = nullptr;
	// special representation for java/lang/Object

	putu2((ushort)(kflags & ~indexMask));
	putref(cur_class);
	putref(cur_super);

	putu2(num = class_interface_count.getInt());
	for (i = 0; i < num; i++)
	{
		putref(class_interface.getRef());
	}

	write_members(class_field_count.getInt(), ATTR_CONTEXT_FIELD);
	write_members(class_method_count.getInt(), ATTR_CONTEXT_METHOD);

	cur_class_has_local_ics = false; // may be set true by write_attrs

	int naOffset = (int)wpoffset();
	int na = write_attrs(ATTR_CONTEXT_CLASS, (kflags & indexMask));

// at the very last, choose which inner classes (if any) pertain to k:
#ifdef ASSERT
	for (i = 0; i < ic_count; i++)
	{
		assert(!ics[i].requested);
	}
#endif
	// First, consult the global table and the local constant pool,
	// and decide on the globally implied inner classes.
	// (Note that we read the cpool's outputIndex fields, but we
	// do not yet write them, since the local IC attribute might
	// reverse a global decision to declare an IC.)
	assert(requested_ics.length() == 0); // must start out empty
	// Always include all members of the current class.
	for (inner_class *child = cp.getFirstChildIC(cur_class); child != nullptr;
		 child = cp.getNextChildIC(child))
	{
		child->requested = true;
		requested_ics.add(child);
	}
	// And, for each inner class mentioned in the constant pool,
	// include it and all its outers.
	int noes = cp.outputEntries.length();
	entry **oes = (entry **)cp.outputEntries.base();
	for (i = 0; i < noes; i++)
	{
		entry &e = *oes[i];
		if (e.tag != CONSTANT_Class)
			continue; // wrong sort
		for (inner_class *ic = cp.getIC(&e); ic != nullptr; ic = cp.getIC(ic->outer))
		{
			if (ic->requested)
				break; // already processed
			ic->requested = true;
			requested_ics.add(ic);
		}
	}
	int local_ics = requested_ics.length();
	// Second, consult a local attribute (if any) and adjust the global set.
	inner_class *extra_ics = nullptr;
	int num_extra_ics = 0;
	if (cur_class_has_local_ics)
	{
		// adjust the set of ICs by symmetric set difference w/ the locals
		num_extra_ics = class_InnerClasses_N.getInt();
		if (num_extra_ics == 0)
		{
			// Explicit zero count has an irregular meaning:  It deletes the attr.
			local_ics = 0; // (short-circuit all tests of requested bits)
		}
		else
		{
			extra_ics = T_NEW(inner_class, num_extra_ics);
			// Note:  extra_ics will be freed up by next call to get_next_file().
		}
	}
	for (i = 0; i < num_extra_ics; i++)
	{
		inner_class &extra_ic = extra_ics[i];
		extra_ic.inner = class_InnerClasses_RC.getRef();
		// Find the corresponding equivalent global IC:
		inner_class *global_ic = cp.getIC(extra_ic.inner);
		int flags = class_InnerClasses_F.getInt();
		if (flags == 0)
		{
			// The extra IC is simply a copy of a global IC.
			if (global_ic == nullptr)
			{
				unpack_abort("bad reference to inner class");
				break;
			}
			extra_ic = (*global_ic); // fill in rest of fields
		}
		else
		{
			flags &= ~ACC_IC_LONG_FORM; // clear high bit if set to get clean zero
			extra_ic.flags = flags;
			extra_ic.outer = class_InnerClasses_outer_RCN.getRefN();
			extra_ic.name = class_InnerClasses_name_RUN.getRefN();
			// Detect if this is an exact copy of the global tuple.
			if (global_ic != nullptr)
			{
				if (global_ic->flags != extra_ic.flags || global_ic->outer != extra_ic.outer ||
					global_ic->name != extra_ic.name)
				{
					global_ic = nullptr; // not really the same, so break the link
				}
			}
		}
		if (global_ic != nullptr && global_ic->requested)
		{
			// This local repetition reverses the globally implied request.
			global_ic->requested = false;
			extra_ic.requested = false;
			local_ics -= 1;
		}
		else
		{
			// The global either does not exist, or is not yet requested.
			extra_ic.requested = true;
			local_ics += 1;
		}
	}
	// Finally, if there are any that survived, put them into an attribute.
	// (Note that a zero-count attribute is always deleted.)
	// The putref calls below will tell the constant pool to add any
	// necessary local CP references to support the InnerClasses attribute.
	// This step must be the last round of additions to the local CP.
	if (local_ics > 0)
	{
		// append the new attribute:
		putref(cp.sym[constant_pool::s_InnerClasses]);
		putu4(2 + 2 * 4 * local_ics);
		putu2(local_ics);
		PTRLIST_QSORT(requested_ics, raw_address_cmp);
		int num_global_ics = requested_ics.length();
		for (i = -num_global_ics; i < num_extra_ics; i++)
		{
			inner_class *ic;
			if (i < 0)
				ic = (inner_class *)requested_ics.get(num_global_ics + i);
			else
				ic = &extra_ics[i];
			if (ic->requested)
			{
				putref(ic->inner);
				putref(ic->outer);
				putref(ic->name);
				putu2(ic->flags);
			}
		}
		putu2_at(wp_at(naOffset), ++na); // increment class attr count
	}

	// Tidy up global 'requested' bits:
	for (i = requested_ics.length(); --i >= 0;)
	{
		inner_class *ic = (inner_class *)requested_ics.get(i);
		ic->requested = false;
	}
	requested_ics.empty();

	close_output();

	// rewrite CP references in the tail
	cp.computeOutputIndexes();
	int nextref = 0;
	for (i = 0; i < (int)class_fixup_type.size(); i++)
	{
		int type = class_fixup_type.getByte(i);
		byte *fixp = wp_at(class_fixup_offset.get(i));
		entry *e = (entry *)class_fixup_ref.get(nextref++);
		int idx = e->getOutputIndex();
		switch (type)
		{
		case 1:
			putu1_at(fixp, idx);
			break;
		case 2:
			putu2_at(fixp, idx);
			break;
		default:
			assert(false); // should not reach here
		}
	}
}

void unpacker::write_classfile_head()
{
	cur_classfile_head.empty();
	set_output(&cur_classfile_head);

	putu4(JAVA_MAGIC);
	putu2(cur_class_minver);
	putu2(cur_class_majver);
	putu2(cp.outputIndexLimit);

	int checkIndex = 1;
	int noes = cp.outputEntries.length();
	entry **oes = (entry **)cp.outputEntries.base();
	for (int i = 0; i < noes; i++)
	{
		entry &e = *oes[i];
		assert(e.getOutputIndex() == checkIndex++);
		byte tag = e.tag;
		assert(tag != CONSTANT_Signature);
		putu1(tag);
		switch (tag)
		{
		case CONSTANT_Utf8:
			putu2((int)e.value.b.len);
			put_bytes(e.value.b);
			break;
		case CONSTANT_Integer:
		case CONSTANT_Float:
			putu4(e.value.i);
			break;
		case CONSTANT_Long:
		case CONSTANT_Double:
			putu8(e.value.l);
			assert(checkIndex++);
			break;
		case CONSTANT_Class:
		case CONSTANT_String:
			// just write the ref
			putu2(e.refs[0]->getOutputIndex());
			break;
		case CONSTANT_Fieldref:
		case CONSTANT_Methodref:
		case CONSTANT_InterfaceMethodref:
		case CONSTANT_NameandType:
			putu2(e.refs[0]->getOutputIndex());
			putu2(e.refs[1]->getOutputIndex());
			break;
		default:
			unpack_abort(ERROR_INTERNAL);
		}
	}
	close_output();
}

unpacker::file *unpacker::get_next_file()
{
	free_temps();
	if (files_remaining == 0)
	{
		// Leave a clue that we're exhausted.
		cur_file.name = nullptr;
		cur_file.size = 0;
		if (archive_size != 0)
		{
			uint64_t predicted_size = unsized_bytes_read + archive_size;
			if (predicted_size != bytes_read)
				unpack_abort("archive header had incorrect size");
		}
		return nullptr;
	}
	files_remaining -= 1;
	assert(files_written < file_count || classes_written < class_count);
	cur_file.name = "";
	cur_file.size = 0;
	cur_file.modtime = default_file_modtime;
	cur_file.options = default_file_options;
	cur_file.data[0].set(nullptr, 0);
	cur_file.data[1].set(nullptr, 0);
	if (files_written < file_count)
	{
		entry *e = file_name.getRef();
		cur_file.name = e->utf8String();
		bool haveLongSize = ((archive_options & AO_HAVE_FILE_SIZE_HI) != 0);
		cur_file.size = file_size_hi.getLong(file_size_lo, haveLongSize);
		if ((archive_options & AO_HAVE_FILE_MODTIME) != 0)
			cur_file.modtime += file_modtime.getInt(); // relative to archive modtime
		if ((archive_options & AO_HAVE_FILE_OPTIONS) != 0)
			cur_file.options |= file_options.getInt() & ~suppress_file_options;
	}
	else if (classes_written < class_count)
	{
		// there is a class for a missing file record
		cur_file.options |= FO_IS_CLASS_STUB;
	}
	if ((cur_file.options & FO_IS_CLASS_STUB) != 0)
	{
		assert(classes_written < class_count);
		classes_written += 1;
		if (cur_file.size != 0)
		{
			unpack_abort("class file size transmitted");
		}
		reset_cur_classfile();

		// write the meat of the classfile:
		write_classfile_tail();
		cur_file.data[1] = cur_classfile_tail.b;

		// write the CP of the classfile, second:
		write_classfile_head();
		cur_file.data[0] = cur_classfile_head.b;

		cur_file.size += cur_file.data[0].len;
		cur_file.size += cur_file.data[1].len;
		if (cur_file.name[0] == '\0')
		{
			bytes &prefix = cur_class->ref(0)->value.b;
			const char *suffix = ".class";
			int len = (int)(prefix.len + strlen(suffix));
			bytes name;
			name.set(T_NEW(byte, add_size(len, 1)), len);
			cur_file.name = name.strcat(prefix).strcat(suffix).strval();
		}
	}
	else
	{
		// If there is buffered file data, produce a pointer to it.
		if (cur_file.size != (size_t)cur_file.size)
		{
			// Silly size specified.
			unpack_abort("resource file too large");
		}
		size_t rpleft = input_remaining();
		if (rpleft > 0)
		{
			if (rpleft > cur_file.size)
				rpleft = (size_t)cur_file.size;
			cur_file.data[0].set(rp, rpleft);
			rp += rpleft;
		}
		if (rpleft < cur_file.size)
		{
			// Caller must read the rest.
			size_t fleft = (size_t)cur_file.size - rpleft;
			bytes_read += fleft; // Credit it to the overall archive size.
		}
	}
	bytes_written += cur_file.size;
	files_written += 1;
	return &cur_file;
}

// Write a file to jarout.
void unpacker::write_file_to_jar(unpacker::file *f)
{
	size_t htsize = f->data[0].len + f->data[1].len;
	uint64_t fsize = f->size;
	if (htsize == fsize)
	{
		jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime, f->data[0], f->data[1]);
	}
	else
	{
		assert(input_remaining() == 0);
		bytes part1, part2;
		part1.len = f->data[0].len;
		part1.set(T_NEW(byte, part1.len), part1.len);
		part1.copyFrom(f->data[0]);
		assert(f->data[1].len == 0);
		part2.set(nullptr, 0);
		size_t fleft = (size_t)fsize - part1.len;
		assert(bytes_read > fleft); // part2 already credited by get_next_file
		bytes_read -= fleft;
		if (fleft > 0)
		{
			// Must read some more.
			if (live_input)
			{
				// Stop using the input buffer.  Make a new one:
				if (free_input)
					input.free();
				input.init(fleft > (1 << 12) ? fleft : (1 << 12));
				free_input = true;
				live_input = false;
			}
			else
			{
				// Make it large enough.
				assert(free_input); // must be reallocable
				input.ensureSize(fleft);
			}
			rplimit = rp = input.base();
			input.setLimit(rp + fleft);
			if (!ensure_input(fleft))
				unpack_abort("EOF reading resource file");
			part2.ptr = input_scan();
			part2.len = input_remaining();
			rplimit = rp = input.base();
		}
		jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime, part1, part2);
	}
	if (verbose >= 3)
	{
		fprintf(stderr, "Wrote " LONG_LONG_FORMAT " bytes to: %s\n", fsize, f->name);
	}
}