/*
 * Copyright (c) 2002, 2008, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

#pragma once

// Global Structures
struct jar;
struct gunzip;
struct band;
struct constant_pool;
struct entry;
struct cpindex;
struct inner_class;
struct value_stream;

typedef int64_t (*read_input_fn_t)(unpacker *self, void *buf, int64_t minlen, int64_t maxlen);

struct cpindex
{
    uint32_t len;
    entry *base1;  // base of primary index
    entry **base2; // base of secondary index
    byte ixTag;    // type of entries (!= CONSTANT_None), plus 64 if sub-index
    enum
    {
        SUB_TAG = 64
    };

    entry *get(uint32_t i);

    void init(int len_, entry *base1_, int ixTag_)
    {
        len = len_;
        base1 = base1_;
        base2 = nullptr;
        ixTag = ixTag_;
    }
    void init(int len_, entry **base2_, int ixTag_)
    {
        len = len_;
        base1 = nullptr;
        base2 = base2_;
        ixTag = ixTag_;
    }
};

struct constant_pool
{
    uint32_t nentries;
    entry *entries;
    entry *first_extra_entry;
    uint32_t maxentries; // total allocated size of entries

    // Position and size of each homogeneous subrange:
    int tag_count[CONSTANT_Limit];
    int tag_base[CONSTANT_Limit];
    cpindex tag_index[CONSTANT_Limit];
    ptrlist tag_extras[CONSTANT_Limit];

    cpindex *member_indexes; // indexed by 2*CONSTANT_Class.inord
    cpindex *getFieldIndex(entry *classRef);
    cpindex *getMethodIndex(entry *classRef);

    inner_class **ic_index;
    inner_class **ic_child_index;
    inner_class *getIC(entry *inner);
    inner_class *getFirstChildIC(entry *outer);
    inner_class *getNextChildIC(inner_class *child);

    int outputIndexLimit;  // index limit after renumbering
    ptrlist outputEntries; // list of entry* needing output idx assigned

    entry **hashTab;
    uint32_t hashTabLength;
    entry *&hashTabRef(byte tag, bytes &b);
    entry *ensureUtf8(bytes &b);
    entry *ensureClass(bytes &b);

    // Well-known Utf8 symbols.
    enum
    {
#define SNAME(n, s) s_##s,
        ALL_ATTR_DO(SNAME)
#undef SNAME
        s_lt_init_gt, // <init>
        s_LIMIT
    };
    entry *sym[s_LIMIT];

    // read counts from hdr, allocate main arrays
    enum
    {
        NUM_COUNTS = 12
    };
    void init(unpacker *u, int counts[NUM_COUNTS]);

    // pointer to outer unpacker, for error checks etc.
    unpacker *u;

    int getCount(byte tag)
    {
        assert((uint32_t)tag < CONSTANT_Limit);
        return tag_count[tag];
    }
    cpindex *getIndex(byte tag)
    {
        assert((uint32_t)tag < CONSTANT_Limit);
        return &tag_index[tag];
    }
    cpindex *getKQIndex(); // uses cur_descr

    void expandSignatures();
    void initMemberIndexes();

    void computeOutputOrder();
    void computeOutputIndexes();
    void resetOutputIndexes();
};

/*
 * The unpacker provides the entry points to the unpack engine,
 * as well as maintains the state of the engine.
 */
struct unpacker
{
    // One element of the resulting JAR.
    struct file
    {
        const char *name;
        uint64_t size;
        int modtime;
        int options;
        bytes data[2];
        // Note:  If Sum(data[*].len) < size,
        // remaining bytes must be read directly from the input stream.
        bool deflate_hint()
        {
            return ((options & FO_DEFLATE_HINT) != 0);
        }
    };

    // if running Unix-style, here are the inputs and outputs
    FILE *infileptr; // buffered
    bytes inbytes;   // direct
    gunzip *gzin;    // gunzip filter, if any
    jar *jarout;     // output JAR file

    // pointer to self, for U_NEW macro
    unpacker *u;

    ptrlist mallocs;     // list of guys to free when we are all done
    ptrlist tmallocs;    // list of guys to free on next client request
    fillbytes smallbuf;  // supplies small alloc requests
    fillbytes tsmallbuf; // supplies temporary small alloc requests

    // option management members
    int verbose;              // verbose level, 0 means no output
    int deflate_hint_or_zero; // ==0 means not set, otherwise -1 or 1
    int modification_time_or_zero;

    // input stream
    fillbytes input; // the whole block (size is predicted, has slop too)
    bool live_input; // is the data in this block live?
    bool free_input; // must the input buffer be freed?
    byte *rp;        // read pointer (< rplimit <= input.limit())
    byte *rplimit;   // how much of the input block has been read?
    uint64_t bytes_read;
    int unsized_bytes_read;

    // callback to read at least one byte, up to available input
    read_input_fn_t read_input_fn;

    // archive header fields
    int magic, minver, majver;
    size_t archive_size;
    int archive_next_count, archive_options, archive_modtime;
    int band_headers_size;
    int file_count, attr_definition_count, ic_count, class_count;
    int default_class_minver, default_class_majver;
    int default_file_options, suppress_file_options;   // not header fields
    int default_archive_modtime, default_file_modtime; // not header fields
    int code_count;                                    // not a header field
    int files_remaining;                               // not a header field

    // engine state
    band *all_bands;  // indexed by band_number
    byte *meta_rp;    // read-pointer into (copy of) band_headers
    constant_pool cp; // all constant pool information
    inner_class *ics; // InnerClasses

    // output stream
    bytes output;  // output block (either classfile head or tail)
    byte *wp;      // write pointer (< wplimit == output.limit())
    byte *wpbase;  // write pointer starting address (<= wp)
    byte *wplimit; // how much of the output block has been written?

    // output state
    file cur_file;
    entry *cur_class;    // CONSTANT_Class entry
    entry *cur_super;    // CONSTANT_Class entry or nullptr
    entry *cur_descr;    // CONSTANT_NameandType entry
    int cur_descr_flags; // flags corresponding to cur_descr
    int cur_class_minver, cur_class_majver;
    bool cur_class_has_local_ics;
    fillbytes cur_classfile_head;
    fillbytes cur_classfile_tail;
    int files_written;   // also tells which file we're working on
    int classes_written; // also tells which class we're working on
    uint64_t bytes_written;
    intlist bcimap;
    fillbytes class_fixup_type;
    intlist class_fixup_offset;
    ptrlist class_fixup_ref;
    fillbytes code_fixup_type; // which format of branch operand?
    intlist code_fixup_offset; // location of operand needing fixup
    intlist code_fixup_source; // encoded ID of branch insn
    ptrlist requested_ics;     // which ics need output?

    // stats pertaining to multiple segments (updated on reset)
    uint64_t bytes_read_before_reset;
    uint64_t bytes_written_before_reset;
    int files_written_before_reset;
    int classes_written_before_reset;
    int segments_read_before_reset;

    // attribute state
    struct layout_definition
    {
        uint32_t idx;     // index (0..31...) which identifies this layout
        const char *name; // name of layout
        entry *nameEntry;
        const char *layout; // string of layout (not yet parsed)
        band **elems;       // array of top-level layout elems (or callables)

        bool hasCallables()
        {
            return layout[0] == '[';
        }
        band **bands()
        {
            assert(elems != nullptr);
            return elems;
        }
    };
    struct attr_definitions
    {
        unpacker *u;         // pointer to self, for U_NEW macro
        int xxx_flags_hi_bn; // locator for flags, count, indexes, calls bands
        int attrc;           // ATTR_CONTEXT_CLASS, etc.
        uint32_t flag_limit; // 32 or 63, depending on archive_options bit
        uint64_t predef;     // mask of built-in definitions
        uint64_t redef;      // mask of local flag definitions or redefinitions
        ptrlist layouts;     // local (compressor-defined) defs, in index order
        int flag_count[X_ATTR_LIMIT_FLAGS_HI];
        intlist overflow_count;
        ptrlist strip_names;   // what attribute names are being stripped?
        ptrlist band_stack;    // Temp., used during layout parsing.
        ptrlist calls_to_link; //  (ditto)
        int bands_made;        //  (ditto)

        void free()
        {
            layouts.free();
            overflow_count.free();
            strip_names.free();
            band_stack.free();
            calls_to_link.free();
        }

        // Locate the five fixed bands.
        band &xxx_flags_hi();
        band &xxx_flags_lo();
        band &xxx_attr_count();
        band &xxx_attr_indexes();
        band &xxx_attr_calls();
        band &fixed_band(int e_class_xxx);

        // Register a new layout, and make bands for it.
        layout_definition *defineLayout(int idx, const char *name, const char *layout);
        layout_definition *defineLayout(int idx, entry *nameEntry, const char *layout);
        band **buildBands(layout_definition *lo);

        // Parse a layout string or part of one, recursively if necessary.
        const char *parseLayout(const char *lp, band **&res, int curCble);
        const char *parseNumeral(const char *lp, int &res);
        const char *parseIntLayout(const char *lp, band *&res, byte le_kind,
                                   bool can_be_signed = false);
        band **popBody(int band_stack_base); // pops a body off band_stack

        // Read data into the bands of the idx-th layout.
        void readBandData(int idx);                     // parse layout, make bands, read data
        void readBandData(band **body, uint32_t count); // recursive helper

        layout_definition *getLayout(uint32_t idx)
        {
            if (idx >= (uint32_t)layouts.length())
                return nullptr;
            return (layout_definition *)layouts.get(idx);
        }

        void setHaveLongFlags(bool z)
        {
            assert(flag_limit == 0); // not set up yet
            flag_limit = (z ? X_ATTR_LIMIT_FLAGS_HI : X_ATTR_LIMIT_NO_FLAGS_HI);
        }
        bool haveLongFlags()
        {
            assert(flag_limit == X_ATTR_LIMIT_NO_FLAGS_HI ||
                   flag_limit == X_ATTR_LIMIT_FLAGS_HI);
            return flag_limit == X_ATTR_LIMIT_FLAGS_HI;
        }

        // Return flag_count if idx is predef and not redef, else zero.
        int predefCount(uint32_t idx);

        bool isRedefined(uint32_t idx)
        {
            if (idx >= flag_limit)
                return false;
            return (bool)((redef >> idx) & 1);
        }
        bool isPredefined(uint32_t idx)
        {
            if (idx >= flag_limit)
                return false;
            return (bool)(((predef & ~redef) >> idx) & 1);
        }
        uint64_t flagIndexMask()
        {
            return (predef | redef);
        }
        bool isIndex(uint32_t idx)
        {
            assert(flag_limit != 0); // must be set up already
            if (idx < flag_limit)
                return (bool)(((predef | redef) >> idx) & 1);
            else
                return (idx - flag_limit < (uint32_t)overflow_count.length());
        }
        int &getCount(uint32_t idx)
        {
            assert(isIndex(idx));
            if (idx < flag_limit)
                return flag_count[idx];
            else
                return overflow_count.get(idx - flag_limit);
        }
    };

    attr_definitions attr_defs[ATTR_CONTEXT_LIMIT];

    // Initialization
    void init(read_input_fn_t input_fn = nullptr);
    // Resets to a known sane state
    void reset();
    // Deallocates all storage.
    void free();
    // Deallocates temporary storage (volatile after next client call).
    void free_temps()
    {
        tsmallbuf.init();
        tmallocs.freeAll();
    }

    // Option management methods
    bool set_option(const char *option, const char *value);
    const char *get_option(const char *option);

    // Fetching input.
    bool ensure_input(int64_t more);
    byte *input_scan()
    {
        return rp;
    }
    size_t input_remaining()
    {
        return rplimit - rp;
    }
    size_t input_consumed()
    {
        return rp - input.base();
    }

    // Entry points to the unpack engine
    static int run(int argc, char **argv); // Unix-style entry point.
    void check_options();
    void start(void *packptr = nullptr, size_t len = 0);
    void write_file_to_jar(file *f);
    void finish();

    // Public post unpack methods
    int get_files_remaining()
    {
        return files_remaining;
    }
    int get_segments_remaining()
    {
        return archive_next_count;
    }
    file *get_next_file(); // returns nullptr on last file

    // General purpose methods
    void *alloc(size_t size)
    {
        return alloc_heap(size, true);
    }
    void *temp_alloc(size_t size)
    {
        return alloc_heap(size, true, true);
    }
    void *alloc_heap(size_t size, bool smallOK = false, bool temp = false);
    void saveTo(bytes &b, const char *str)
    {
        saveTo(b, (byte *)str, strlen(str));
    }
    void saveTo(bytes &b, bytes &data)
    {
        saveTo(b, data.ptr, data.len);
    }
    void saveTo(bytes &b, byte *ptr, size_t len); //{ b.ptr = U_NEW...}
    const char *saveStr(const char *str)
    {
        bytes buf;
        saveTo(buf, str);
        return buf.strval();
    }
    const char *saveIntStr(int num)
    {
        char buf[30];
        sprintf(buf, "%d", num);
        return saveStr(buf);
    }
    static unpacker *current(); // find current instance

    // Output management
    void set_output(fillbytes *which)
    {
        assert(wp == nullptr);
        which->ensureSize(1 << 12); // covers the average classfile
        wpbase = which->base();
        wp = which->limit();
        wplimit = which->end();
    }
    fillbytes *close_output(fillbytes *which = nullptr); // inverse of set_output

    // These take an implicit parameter of wp/wplimit, and resize as necessary:
    byte *put_space(size_t len); // allocates space at wp, returns pointer
    size_t put_empty(size_t s)
    {
        byte *p = put_space(s);
        return p - wpbase;
    }
    void ensure_put_space(size_t len);
    void put_bytes(bytes &b)
    {
        b.writeTo(put_space(b.len));
    }
    void putu1(int n)
    {
        putu1_at(put_space(1), n);
    }
    void putu1_fast(int n)
    {
        putu1_at(wp++, n);
    }
    void putu2(int n);                    // { putu2_at(put_space(2), n); }
    void putu4(int n);                    // { putu4_at(put_space(4), n); }
    void putu8(int64_t n);                // { putu8_at(put_space(8), n); }
    void putref(entry *e);                // { putu2_at(put_space(2), putref_index(e, 2)); }
    void putu1ref(entry *e);              // { putu1_at(put_space(1), putref_index(e, 1)); }
    int putref_index(entry *e, int size); // size in [1..2]
    void put_label(int curIP, int size);  // size in {2,4}
    void putlayout(band **body);
    void put_stackmap_type();

    size_t wpoffset()
    {
        return (size_t)(wp - wpbase);
    } // (unvariant across overflow)
    byte *wp_at(size_t offset)
    {
        return wpbase + offset;
    }
    uint32_t to_bci(uint32_t bii);
    void get_code_header(int &max_stack, int &max_na_locals, int &handler_count, int &cflags);
    band *ref_band_for_self_op(int bc, bool &isAloadVar, int &origBCVar);
    band *ref_band_for_op(int bc);

    // Definitions of standard classfile int formats:
    static void putu1_at(byte *wp, int n)
    {
        assert(n == (n & 0xFF));
        wp[0] = n;
    }
    static void putu2_at(byte *wp, int n);
    static void putu4_at(byte *wp, int n);
    static void putu8_at(byte *wp, int64_t n);

    // Private stuff
    void reset_cur_classfile();
    void write_classfile_tail();
    void write_classfile_head();
    void write_code();
    void write_bc_ops();
    void write_members(int num, int attrc); // attrc=ATTR_CONTEXT_FIELD/METHOD
    int write_attrs(int attrc, uint64_t indexBits);

    // The readers
    void read_bands();
    void read_file_header();
    void read_cp();
    void read_cp_counts(value_stream &hdr);
    void read_attr_defs();
    void read_ics();
    void read_attrs(int attrc, int obj_count);
    void read_classes();
    void read_code_headers();
    void read_bcs();
    void read_bc_ops();
    void read_files();
    void read_Utf8_values(entry *cpMap, int len);
    void read_single_words(band &cp_band, entry *cpMap, int len);
    void read_double_words(band &cp_bands, entry *cpMap, int len);
    void read_single_refs(band &cp_band, byte refTag, entry *cpMap, int len);
    void read_double_refs(band &cp_band, byte ref1Tag, byte ref2Tag, entry *cpMap, int len);
    void read_signature_values(entry *cpMap, int len);
};