//! A hash-map that behaves deterministically when the //! `enhanced-determinism` feature is enabled. #[cfg(all(feature = "enhanced-determinism", feature = "serde-serialize"))] use indexmap::IndexMap as StdHashMap; #[cfg(all(not(feature = "enhanced-determinism"), feature = "serde-serialize"))] use std::collections::HashMap as StdHashMap; /// Serializes only the capacity of a hash-map instead of its actual content. #[cfg(feature = "serde-serialize")] pub fn serialize_hashmap_capacity( map: &StdHashMap, s: S, ) -> Result { s.serialize_u64(map.capacity() as u64) } /// Creates a new hash-map with its capacity deserialized from `d`. #[cfg(feature = "serde-serialize")] pub fn deserialize_hashmap_capacity< 'de, D: serde::Deserializer<'de>, K, V, H: std::hash::BuildHasher + Default, >( d: D, ) -> Result, D::Error> { struct CapacityVisitor; impl<'de> serde::de::Visitor<'de> for CapacityVisitor { type Value = u64; fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result { write!(formatter, "an integer between 0 and 2^64") } fn visit_u64(self, val: u64) -> Result { Ok(val) } } let capacity = d.deserialize_u64(CapacityVisitor)? as usize; Ok(StdHashMap::with_capacity_and_hasher( capacity, Default::default(), )) } /* * FxHasher taken from rustc_hash, except that it does not depend on the pointer size. */ #[cfg(feature = "enhanced-determinism")] pub type FxHashMap32 = indexmap::IndexMap>; #[cfg(feature = "enhanced-determinism")] pub use {self::FxHashMap32 as HashMap, indexmap::map::Entry}; #[cfg(not(feature = "enhanced-determinism"))] pub use {rustc_hash::FxHashMap as HashMap, std::collections::hash_map::Entry}; const K: u32 = 0x9e3779b9; // Same as FxHasher, but with the guarantee that the internal hash is // an u32 instead of something that depends on the platform. pub struct FxHasher32 { hash: u32, } impl Default for FxHasher32 { #[inline] fn default() -> FxHasher32 { FxHasher32 { hash: 0 } } } impl FxHasher32 { #[inline] fn add_to_hash(&mut self, i: u32) { use std::ops::BitXor; self.hash = self.hash.rotate_left(5).bitxor(i).wrapping_mul(K); } } impl std::hash::Hasher for FxHasher32 { #[inline] fn write(&mut self, mut bytes: &[u8]) { use std::convert::TryInto; let read_u32 = |bytes: &[u8]| u32::from_ne_bytes(bytes[..4].try_into().unwrap()); let mut hash = FxHasher32 { hash: self.hash }; assert!(std::mem::size_of::() <= 8); while bytes.len() >= std::mem::size_of::() { hash.add_to_hash(read_u32(bytes) as u32); bytes = &bytes[std::mem::size_of::()..]; } if (std::mem::size_of::() > 4) && (bytes.len() >= 4) { hash.add_to_hash(u32::from_ne_bytes(bytes[..4].try_into().unwrap()) as u32); bytes = &bytes[4..]; } if (std::mem::size_of::() > 2) && bytes.len() >= 2 { hash.add_to_hash(u16::from_ne_bytes(bytes[..2].try_into().unwrap()) as u32); bytes = &bytes[2..]; } if (std::mem::size_of::() > 1) && bytes.len() >= 1 { hash.add_to_hash(bytes[0] as u32); } self.hash = hash.hash; } #[inline] fn write_u8(&mut self, i: u8) { self.add_to_hash(i as u32); } #[inline] fn write_u16(&mut self, i: u16) { self.add_to_hash(i as u32); } #[inline] fn write_u32(&mut self, i: u32) { self.add_to_hash(i as u32); } #[inline] fn write_u64(&mut self, i: u64) { self.add_to_hash(i as u32); self.add_to_hash((i >> 32) as u32); } #[inline] fn write_usize(&mut self, i: usize) { self.add_to_hash(i as u32); } #[inline] fn finish(&self) -> u64 { self.hash as u64 } }