use crate::dynamics::solver::{GenericRhs, TwoBodyConstraint}; use crate::dynamics::{IntegrationParameters, MultibodyJointSet, RigidBodySet}; use crate::geometry::{ContactManifold, ContactManifoldIndex}; use crate::math::{Real, DIM, MAX_MANIFOLD_POINTS}; use crate::utils::{SimdAngularInertia, SimdCross, SimdDot}; use super::{TwoBodyConstraintBuilder, TwoBodyConstraintElement, TwoBodyConstraintNormalPart}; use crate::dynamics::solver::solver_body::SolverBody; use crate::dynamics::solver::{ContactPointInfos, SolverVel}; use crate::prelude::RigidBodyHandle; #[cfg(feature = "dim2")] use crate::utils::SimdBasis; use na::DVector; #[derive(Copy, Clone)] pub(crate) struct GenericTwoBodyConstraintBuilder { handle1: RigidBodyHandle, handle2: RigidBodyHandle, ccd_thickness: Real, inner: TwoBodyConstraintBuilder, } impl GenericTwoBodyConstraintBuilder { pub fn invalid() -> Self { Self { handle1: RigidBodyHandle::invalid(), handle2: RigidBodyHandle::invalid(), ccd_thickness: Real::MAX, inner: TwoBodyConstraintBuilder::invalid(), } } pub fn generate( manifold_id: ContactManifoldIndex, manifold: &ContactManifold, bodies: &RigidBodySet, multibodies: &MultibodyJointSet, out_builders: &mut [GenericTwoBodyConstraintBuilder], out_constraints: &mut [GenericTwoBodyConstraint], jacobians: &mut DVector, jacobian_id: &mut usize, ) { let handle1 = manifold.data.rigid_body1.unwrap(); let handle2 = manifold.data.rigid_body2.unwrap(); let rb1 = &bodies[handle1]; let rb2 = &bodies[handle2]; let (vels1, mprops1, type1) = (&rb1.vels, &rb1.mprops, &rb1.body_type); let (vels2, mprops2, type2) = (&rb2.vels, &rb2.mprops, &rb2.body_type); let multibody1 = multibodies .rigid_body_link(handle1) .map(|m| (&multibodies[m.multibody], m.id)); let multibody2 = multibodies .rigid_body_link(handle2) .map(|m| (&multibodies[m.multibody], m.id)); let solver_vel1 = multibody1 .map(|mb| mb.0.solver_id) .unwrap_or(if type1.is_dynamic() { rb1.ids.active_set_offset } else { 0 }); let solver_vel2 = multibody2 .map(|mb| mb.0.solver_id) .unwrap_or(if type2.is_dynamic() { rb2.ids.active_set_offset } else { 0 }); let force_dir1 = -manifold.data.normal; #[cfg(feature = "dim2")] let tangents1 = force_dir1.orthonormal_basis(); #[cfg(feature = "dim3")] let tangents1 = super::compute_tangent_contact_directions(&force_dir1, &vels1.linvel, &vels2.linvel); let multibodies_ndof = multibody1.map(|m| m.0.ndofs()).unwrap_or(0) + multibody2.map(|m| m.0.ndofs()).unwrap_or(0); // For each solver contact we generate DIM constraints, and each constraints appends // the multibodies jacobian and weighted jacobians let required_jacobian_len = *jacobian_id + manifold.data.solver_contacts.len() * multibodies_ndof * 2 * DIM; if jacobians.nrows() < required_jacobian_len && !cfg!(feature = "parallel") { jacobians.resize_vertically_mut(required_jacobian_len, 0.0); } for (l, manifold_points) in manifold .data .solver_contacts .chunks(MAX_MANIFOLD_POINTS) .enumerate() { let chunk_j_id = *jacobian_id; let builder = &mut out_builders[l]; let constraint = &mut out_constraints[l]; constraint.inner.dir1 = force_dir1; constraint.inner.im1 = if type1.is_dynamic() { mprops1.effective_inv_mass } else { na::zero() }; constraint.inner.im2 = if type2.is_dynamic() { mprops2.effective_inv_mass } else { na::zero() }; constraint.inner.solver_vel1 = solver_vel1; constraint.inner.solver_vel2 = solver_vel2; constraint.inner.manifold_id = manifold_id; constraint.inner.num_contacts = manifold_points.len() as u8; #[cfg(feature = "dim3")] { constraint.inner.tangent1 = tangents1[0]; } for k in 0..manifold_points.len() { let manifold_point = &manifold_points[k]; let point = manifold_point.point; let dp1 = point - mprops1.world_com; let dp2 = point - mprops2.world_com; let vel1 = vels1.linvel + vels1.angvel.gcross(dp1); let vel2 = vels2.linvel + vels2.angvel.gcross(dp2); constraint.inner.limit = manifold_point.friction; constraint.inner.manifold_contact_id[k] = manifold_point.contact_id; // Normal part. let normal_rhs_wo_bias; { let torque_dir1 = dp1.gcross(force_dir1); let torque_dir2 = dp2.gcross(-force_dir1); let gcross1 = if type1.is_dynamic() { mprops1 .effective_world_inv_inertia_sqrt .transform_vector(torque_dir1) } else { na::zero() }; let gcross2 = if type2.is_dynamic() { mprops2 .effective_world_inv_inertia_sqrt .transform_vector(torque_dir2) } else { na::zero() }; let inv_r1 = if let Some((mb1, link_id1)) = multibody1.as_ref() { mb1.fill_jacobians( *link_id1, force_dir1, #[cfg(feature = "dim2")] na::vector!(torque_dir1), #[cfg(feature = "dim3")] torque_dir1, jacobian_id, jacobians, ) .0 } else if type1.is_dynamic() { force_dir1.dot(&mprops1.effective_inv_mass.component_mul(&force_dir1)) + gcross1.gdot(gcross1) } else { 0.0 }; let inv_r2 = if let Some((mb2, link_id2)) = multibody2.as_ref() { mb2.fill_jacobians( *link_id2, -force_dir1, #[cfg(feature = "dim2")] na::vector!(torque_dir2), #[cfg(feature = "dim3")] torque_dir2, jacobian_id, jacobians, ) .0 } else if type2.is_dynamic() { force_dir1.dot(&mprops2.effective_inv_mass.component_mul(&force_dir1)) + gcross2.gdot(gcross2) } else { 0.0 }; let r = crate::utils::inv(inv_r1 + inv_r2); let is_bouncy = manifold_point.is_bouncy() as u32 as Real; normal_rhs_wo_bias = (is_bouncy * manifold_point.restitution) * (vel1 - vel2).dot(&force_dir1); constraint.inner.elements[k].normal_part = TwoBodyConstraintNormalPart { gcross1, gcross2, rhs: na::zero(), rhs_wo_bias: na::zero(), impulse_accumulator: na::zero(), impulse: manifold_point.warmstart_impulse, r, r_mat_elts: [0.0; 2], }; } // Tangent parts. { constraint.inner.elements[k].tangent_part.impulse = manifold_point.warmstart_tangent_impulse; for j in 0..DIM - 1 { let torque_dir1 = dp1.gcross(tangents1[j]); let gcross1 = if type1.is_dynamic() { mprops1 .effective_world_inv_inertia_sqrt .transform_vector(torque_dir1) } else { na::zero() }; constraint.inner.elements[k].tangent_part.gcross1[j] = gcross1; let torque_dir2 = dp2.gcross(-tangents1[j]); let gcross2 = if type2.is_dynamic() { mprops2 .effective_world_inv_inertia_sqrt .transform_vector(torque_dir2) } else { na::zero() }; constraint.inner.elements[k].tangent_part.gcross2[j] = gcross2; let inv_r1 = if let Some((mb1, link_id1)) = multibody1.as_ref() { mb1.fill_jacobians( *link_id1, tangents1[j], #[cfg(feature = "dim2")] na::vector![torque_dir1], #[cfg(feature = "dim3")] torque_dir1, jacobian_id, jacobians, ) .0 } else if type1.is_dynamic() { force_dir1.dot(&mprops1.effective_inv_mass.component_mul(&force_dir1)) + gcross1.gdot(gcross1) } else { 0.0 }; let inv_r2 = if let Some((mb2, link_id2)) = multibody2.as_ref() { mb2.fill_jacobians( *link_id2, -tangents1[j], #[cfg(feature = "dim2")] na::vector![torque_dir2], #[cfg(feature = "dim3")] torque_dir2, jacobian_id, jacobians, ) .0 } else if type2.is_dynamic() { force_dir1.dot(&mprops2.effective_inv_mass.component_mul(&force_dir1)) + gcross2.gdot(gcross2) } else { 0.0 }; let r = crate::utils::inv(inv_r1 + inv_r2); let rhs_wo_bias = manifold_point.tangent_velocity.dot(&tangents1[j]); constraint.inner.elements[k].tangent_part.rhs_wo_bias[j] = rhs_wo_bias; constraint.inner.elements[k].tangent_part.rhs[j] = rhs_wo_bias; // TODO: in 3D, we should take into account gcross[0].dot(gcross[1]) // in lhs. See the corresponding code on the `velocity_constraint.rs` // file. constraint.inner.elements[k].tangent_part.r[j] = r; } } // Builder. let infos = ContactPointInfos { local_p1: rb1 .pos .position .inverse_transform_point(&manifold_point.point), local_p2: rb2 .pos .position .inverse_transform_point(&manifold_point.point), tangent_vel: manifold_point.tangent_velocity, dist: manifold_point.dist, normal_rhs_wo_bias, }; builder.handle1 = handle1; builder.handle2 = handle2; builder.ccd_thickness = rb1.ccd.ccd_thickness + rb2.ccd.ccd_thickness; builder.inner.infos[k] = infos; constraint.inner.manifold_contact_id[k] = manifold_point.contact_id; } let ndofs1 = multibody1.map(|mb| mb.0.ndofs()).unwrap_or(0); let ndofs2 = multibody2.map(|mb| mb.0.ndofs()).unwrap_or(0); // NOTE: we use the generic constraint for non-dynamic bodies because this will // reduce all ops to nothing because its ndofs will be zero. let generic_constraint_mask = (multibody1.is_some() as u8) | ((multibody2.is_some() as u8) << 1) | (!type1.is_dynamic() as u8) | ((!type2.is_dynamic() as u8) << 1); constraint.j_id = chunk_j_id; constraint.ndofs1 = ndofs1; constraint.ndofs2 = ndofs2; constraint.generic_constraint_mask = generic_constraint_mask; } } pub fn update( &self, params: &IntegrationParameters, solved_dt: Real, bodies: &[SolverBody], multibodies: &MultibodyJointSet, constraint: &mut GenericTwoBodyConstraint, ) { // We don’t update jacobians so the update is mostly identical to the non-generic velocity constraint. let pos1 = multibodies .rigid_body_link(self.handle1) .map(|m| &multibodies[m.multibody].link(m.id).unwrap().local_to_world) .unwrap_or_else(|| &bodies[constraint.inner.solver_vel1].position); let pos2 = multibodies .rigid_body_link(self.handle2) .map(|m| &multibodies[m.multibody].link(m.id).unwrap().local_to_world) .unwrap_or_else(|| &bodies[constraint.inner.solver_vel2].position); self.inner .update_with_positions(params, solved_dt, pos1, pos2, &mut constraint.inner); } } #[derive(Copy, Clone, Debug)] pub(crate) struct GenericTwoBodyConstraint { // We just build the generic constraint on top of the velocity constraint, // adding some information we can use in the generic case. pub inner: TwoBodyConstraint, pub j_id: usize, pub ndofs1: usize, pub ndofs2: usize, pub generic_constraint_mask: u8, } impl GenericTwoBodyConstraint { pub fn invalid() -> Self { Self { inner: TwoBodyConstraint::invalid(), j_id: usize::MAX, ndofs1: usize::MAX, ndofs2: usize::MAX, generic_constraint_mask: u8::MAX, } } pub fn warmstart( &mut self, jacobians: &DVector, solver_vels: &mut [SolverVel], generic_solver_vels: &mut DVector, ) { let mut solver_vel1 = if self.generic_constraint_mask & 0b01 == 0 { GenericRhs::SolverVel(solver_vels[self.inner.solver_vel1]) } else { GenericRhs::GenericId(self.inner.solver_vel1) }; let mut solver_vel2 = if self.generic_constraint_mask & 0b10 == 0 { GenericRhs::SolverVel(solver_vels[self.inner.solver_vel2]) } else { GenericRhs::GenericId(self.inner.solver_vel2) }; let elements = &mut self.inner.elements[..self.inner.num_contacts as usize]; TwoBodyConstraintElement::generic_warmstart_group( elements, jacobians, &self.inner.dir1, #[cfg(feature = "dim3")] &self.inner.tangent1, &self.inner.im1, &self.inner.im2, self.ndofs1, self.ndofs2, self.j_id, &mut solver_vel1, &mut solver_vel2, generic_solver_vels, ); if let GenericRhs::SolverVel(solver_vel1) = solver_vel1 { solver_vels[self.inner.solver_vel1] = solver_vel1; } if let GenericRhs::SolverVel(solver_vel2) = solver_vel2 { solver_vels[self.inner.solver_vel2] = solver_vel2; } } pub fn solve( &mut self, jacobians: &DVector, solver_vels: &mut [SolverVel], generic_solver_vels: &mut DVector, solve_restitution: bool, solve_friction: bool, ) { let mut solver_vel1 = if self.generic_constraint_mask & 0b01 == 0 { GenericRhs::SolverVel(solver_vels[self.inner.solver_vel1]) } else { GenericRhs::GenericId(self.inner.solver_vel1) }; let mut solver_vel2 = if self.generic_constraint_mask & 0b10 == 0 { GenericRhs::SolverVel(solver_vels[self.inner.solver_vel2]) } else { GenericRhs::GenericId(self.inner.solver_vel2) }; let elements = &mut self.inner.elements[..self.inner.num_contacts as usize]; TwoBodyConstraintElement::generic_solve_group( self.inner.cfm_factor, elements, jacobians, &self.inner.dir1, #[cfg(feature = "dim3")] &self.inner.tangent1, &self.inner.im1, &self.inner.im2, self.inner.limit, self.ndofs1, self.ndofs2, self.j_id, &mut solver_vel1, &mut solver_vel2, generic_solver_vels, solve_restitution, solve_friction, ); if let GenericRhs::SolverVel(solver_vel1) = solver_vel1 { solver_vels[self.inner.solver_vel1] = solver_vel1; } if let GenericRhs::SolverVel(solver_vel2) = solver_vel2 { solver_vels[self.inner.solver_vel2] = solver_vel2; } } pub fn writeback_impulses(&self, manifolds_all: &mut [&mut ContactManifold]) { self.inner.writeback_impulses(manifolds_all); } pub fn remove_cfm_and_bias_from_rhs(&mut self) { self.inner.remove_cfm_and_bias_from_rhs(); } }