use crate::dynamics::{FixedJoint, IntegrationParameters, RigidBody}; use crate::math::{AngularInertia, Isometry, Point, Rotation}; use crate::utils::WAngularInertia; #[derive(Debug)] pub(crate) struct FixedPositionConstraint { position1: usize, position2: usize, local_anchor1: Isometry, local_anchor2: Isometry, local_com1: Point, local_com2: Point, im1: f32, im2: f32, ii1: AngularInertia, ii2: AngularInertia, lin_inv_lhs: f32, ang_inv_lhs: AngularInertia, } impl FixedPositionConstraint { pub fn from_params(rb1: &RigidBody, rb2: &RigidBody, cparams: &FixedJoint) -> Self { let ii1 = rb1.world_inv_inertia_sqrt.squared(); let ii2 = rb2.world_inv_inertia_sqrt.squared(); let im1 = rb1.mass_properties.inv_mass; let im2 = rb2.mass_properties.inv_mass; let lin_inv_lhs = 1.0 / (im1 + im2); let ang_inv_lhs = (ii1 + ii2).inverse(); Self { local_anchor1: cparams.local_anchor1, local_anchor2: cparams.local_anchor2, position1: rb1.active_set_offset, position2: rb2.active_set_offset, im1, im2, ii1, ii2, local_com1: rb1.mass_properties.local_com, local_com2: rb2.mass_properties.local_com, lin_inv_lhs, ang_inv_lhs, } } pub fn solve(&self, params: &IntegrationParameters, positions: &mut [Isometry]) { let mut position1 = positions[self.position1 as usize]; let mut position2 = positions[self.position2 as usize]; // Angular correction. let anchor1 = position1 * self.local_anchor1; let anchor2 = position2 * self.local_anchor2; let ang_err = anchor2.rotation * anchor1.rotation.inverse(); #[cfg(feature = "dim3")] let ang_impulse = self .ang_inv_lhs .transform_vector(ang_err.scaled_axis() * params.joint_erp); #[cfg(feature = "dim2")] let ang_impulse = self .ang_inv_lhs .transform_vector(ang_err.angle() * params.joint_erp); position1.rotation = Rotation::new(self.ii1.transform_vector(ang_impulse)) * position1.rotation; position2.rotation = Rotation::new(self.ii2.transform_vector(-ang_impulse)) * position2.rotation; // Linear correction. let anchor1 = position1 * Point::from(self.local_anchor1.translation.vector); let anchor2 = position2 * Point::from(self.local_anchor2.translation.vector); let err = anchor2 - anchor1; let impulse = err * (self.lin_inv_lhs * params.joint_erp); position1.translation.vector += self.im1 * impulse; position2.translation.vector -= self.im2 * impulse; positions[self.position1 as usize] = position1; positions[self.position2 as usize] = position2; } } #[derive(Debug)] pub(crate) struct FixedPositionGroundConstraint { position2: usize, anchor1: Isometry, local_anchor2: Isometry, local_com2: Point, im2: f32, ii2: AngularInertia, impulse: f32, } impl FixedPositionGroundConstraint { pub fn from_params( rb1: &RigidBody, rb2: &RigidBody, cparams: &FixedJoint, flipped: bool, ) -> Self { let anchor1; let local_anchor2; if flipped { anchor1 = rb1.predicted_position * cparams.local_anchor2; local_anchor2 = cparams.local_anchor1; } else { anchor1 = rb1.predicted_position * cparams.local_anchor1; local_anchor2 = cparams.local_anchor2; }; Self { anchor1, local_anchor2, position2: rb2.active_set_offset, im2: rb2.mass_properties.inv_mass, ii2: rb2.world_inv_inertia_sqrt.squared(), local_com2: rb2.mass_properties.local_com, impulse: 0.0, } } pub fn solve(&self, params: &IntegrationParameters, positions: &mut [Isometry]) { let mut position2 = positions[self.position2 as usize]; // Angular correction. let anchor2 = position2 * self.local_anchor2; let ang_err = anchor2.rotation * self.anchor1.rotation.inverse(); position2.rotation = ang_err.powf(-params.joint_erp) * position2.rotation; // Linear correction. let anchor1 = Point::from(self.anchor1.translation.vector); let anchor2 = position2 * Point::from(self.local_anchor2.translation.vector); let err = anchor2 - anchor1; // NOTE: no need to divide by im2 just to multiply right after. let impulse = err * params.joint_erp; position2.translation.vector -= impulse; positions[self.position2 as usize] = position2; } }