use crate::dynamics::{IntegrationParameters, PrismaticJoint, RigidBody}; use crate::math::{AngularInertia, Isometry, Point, Rotation, Vector}; use crate::utils::WAngularInertia; use na::Unit; #[derive(Debug)] pub(crate) struct PrismaticPositionConstraint { position1: usize, position2: usize, im1: f32, im2: f32, ii1: AngularInertia, ii2: AngularInertia, lin_inv_lhs: f32, ang_inv_lhs: AngularInertia, limits: [f32; 2], local_frame1: Isometry, local_frame2: Isometry, local_axis1: Unit>, local_axis2: Unit>, } impl PrismaticPositionConstraint { pub fn from_params(rb1: &RigidBody, rb2: &RigidBody, cparams: &PrismaticJoint) -> Self { let ii1 = rb1.world_inv_inertia_sqrt.squared(); let ii2 = rb2.world_inv_inertia_sqrt.squared(); let im1 = rb1.mass_properties.inv_mass; let im2 = rb2.mass_properties.inv_mass; let lin_inv_lhs = 1.0 / (im1 + im2); let ang_inv_lhs = (ii1 + ii2).inverse(); Self { im1, im2, ii1, ii2, lin_inv_lhs, ang_inv_lhs, local_frame1: cparams.local_frame1(), local_frame2: cparams.local_frame2(), local_axis1: cparams.local_axis1, local_axis2: cparams.local_axis2, position1: rb1.active_set_offset, position2: rb2.active_set_offset, limits: cparams.limits, } } pub fn solve(&self, params: &IntegrationParameters, positions: &mut [Isometry]) { let mut position1 = positions[self.position1 as usize]; let mut position2 = positions[self.position2 as usize]; // Angular correction. let frame1 = position1 * self.local_frame1; let frame2 = position2 * self.local_frame2; let ang_err = frame2.rotation * frame1.rotation.inverse(); #[cfg(feature = "dim2")] let ang_impulse = self .ang_inv_lhs .transform_vector(ang_err.angle() * params.joint_erp); #[cfg(feature = "dim3")] let ang_impulse = self .ang_inv_lhs .transform_vector(ang_err.scaled_axis() * params.joint_erp); position1.rotation = Rotation::new(self.ii1.transform_vector(ang_impulse)) * position1.rotation; position2.rotation = Rotation::new(self.ii2.transform_vector(-ang_impulse)) * position2.rotation; // Linear correction. let anchor1 = position1 * Point::from(self.local_frame1.translation.vector); let anchor2 = position2 * Point::from(self.local_frame2.translation.vector); let axis1 = position1 * self.local_axis1; let dpos = anchor2 - anchor1; let limit_err = dpos.dot(&axis1); let mut err = dpos - *axis1 * limit_err; if limit_err < self.limits[0] { err += *axis1 * (limit_err - self.limits[0]); } else if limit_err > self.limits[1] { err += *axis1 * (limit_err - self.limits[1]); } let impulse = err * (self.lin_inv_lhs * params.joint_erp); position1.translation.vector += self.im1 * impulse; position2.translation.vector -= self.im2 * impulse; positions[self.position1 as usize] = position1; positions[self.position2 as usize] = position2; } } #[derive(Debug)] pub(crate) struct PrismaticPositionGroundConstraint { position2: usize, frame1: Isometry, local_frame2: Isometry, axis1: Unit>, local_axis2: Unit>, limits: [f32; 2], } impl PrismaticPositionGroundConstraint { pub fn from_params( rb1: &RigidBody, rb2: &RigidBody, cparams: &PrismaticJoint, flipped: bool, ) -> Self { let frame1; let local_frame2; let axis1; let local_axis2; if flipped { frame1 = rb1.predicted_position * cparams.local_frame2(); local_frame2 = cparams.local_frame1(); axis1 = rb1.predicted_position * cparams.local_axis2; local_axis2 = cparams.local_axis1; } else { frame1 = rb1.predicted_position * cparams.local_frame1(); local_frame2 = cparams.local_frame2(); axis1 = rb1.predicted_position * cparams.local_axis1; local_axis2 = cparams.local_axis2; }; Self { frame1, local_frame2, axis1, local_axis2, position2: rb2.active_set_offset, limits: cparams.limits, } } pub fn solve(&self, params: &IntegrationParameters, positions: &mut [Isometry]) { let mut position2 = positions[self.position2 as usize]; // Angular correction. let frame2 = position2 * self.local_frame2; let ang_err = frame2.rotation * self.frame1.rotation.inverse(); position2.rotation = ang_err.powf(-params.joint_erp) * position2.rotation; // Linear correction. let anchor1 = Point::from(self.frame1.translation.vector); let anchor2 = position2 * Point::from(self.local_frame2.translation.vector); let dpos = anchor2 - anchor1; let limit_err = dpos.dot(&self.axis1); let mut err = dpos - *self.axis1 * limit_err; if limit_err < self.limits[0] { err += *self.axis1 * (limit_err - self.limits[0]); } else if limit_err > self.limits[1] { err += *self.axis1 * (limit_err - self.limits[1]); } // NOTE: no need to divide by im2 just to multiply right after. let impulse = err * params.joint_erp; position2.translation.vector -= impulse; positions[self.position2 as usize] = position2; } }