aboutsummaryrefslogtreecommitdiff
path: root/src/main/java/bartworks/util/NoiseUtil
diff options
context:
space:
mode:
authorNotAPenguin <michiel.vandeginste@gmail.com>2024-09-02 23:17:17 +0200
committerGitHub <noreply@github.com>2024-09-02 23:17:17 +0200
commit1b820de08a05070909a267e17f033fcf58ac8710 (patch)
tree02831a025986a06b20f87e5bcc69d1e0c639a342 /src/main/java/bartworks/util/NoiseUtil
parentafd3fd92b6a6ab9ab0d0dc3214e6bc8ff7a86c9b (diff)
downloadGT5-Unofficial-1b820de08a05070909a267e17f033fcf58ac8710.tar.gz
GT5-Unofficial-1b820de08a05070909a267e17f033fcf58ac8710.tar.bz2
GT5-Unofficial-1b820de08a05070909a267e17f033fcf58ac8710.zip
The Great Renaming (#3014)
* move kekztech to a single root dir * move detrav to a single root dir * move gtnh-lanthanides to a single root dir * move tectech and delete some gross reflection in gt++ * remove more reflection inside gt5u * delete more reflection in gt++ * fix imports * move bartworks and bwcrossmod * fix proxies * move galactigreg and ggfab * move gtneioreplugin * try to fix gt++ bee loader * apply the rename rules to BW * apply rename rules to bwcrossmod * apply rename rules to detrav scanner mod * apply rename rules to galacticgreg * apply rename rules to ggfab * apply rename rules to goodgenerator * apply rename rules to gtnh-lanthanides * apply rename rules to gt++ * apply rename rules to kekztech * apply rename rules to kubatech * apply rename rules to tectech * apply rename rules to gt apply the rename rules to gt * fix tt import * fix mui hopefully * fix coremod except intergalactic * rename assline recipe class * fix a class name i stumbled on * rename StructureUtility to GTStructureUtility to prevent conflict with structurelib * temporary rename of GTTooltipDataCache to old name * fix gt client/server proxy names
Diffstat (limited to 'src/main/java/bartworks/util/NoiseUtil')
-rw-r--r--src/main/java/bartworks/util/NoiseUtil/BartsNoise.java171
-rw-r--r--src/main/java/bartworks/util/NoiseUtil/SimplexNoise.java396
2 files changed, 567 insertions, 0 deletions
diff --git a/src/main/java/bartworks/util/NoiseUtil/BartsNoise.java b/src/main/java/bartworks/util/NoiseUtil/BartsNoise.java
new file mode 100644
index 0000000000..2130f27ccd
--- /dev/null
+++ b/src/main/java/bartworks/util/NoiseUtil/BartsNoise.java
@@ -0,0 +1,171 @@
+/*
+ * Copyright (c) 2018-2019 bartimaeusnek Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in the Software without restriction,
+ * including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
+ * conditions: The above copyright notice and this permission notice shall be included in all copies or substantial
+ * portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
+ * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+ * DEALINGS IN THE SOFTWARE.
+ */
+
+package bartworks.util.NoiseUtil;
+
+import java.util.Random;
+
+import bartworks.API.INoiseGen;
+import bartworks.util.MathUtils;
+import gregtech.api.objects.XSTR;
+
+public class BartsNoise implements INoiseGen {
+
+ public void setUsePhase(boolean usePhase) {
+ this.usePhase = usePhase;
+ }
+
+ public void setRandom(Random random) {
+ this.random = random;
+ }
+
+ boolean usePhase;
+ int octaves;
+ double frequency;
+ double amplitude;
+ long seed;
+ Random random;
+
+ public enum NoiseColor {
+
+ Red(-1),
+ Pink(-0.5),
+ White(0),
+ Blue(0.5),
+ Violet(1);
+
+ NoiseColor(double num) {
+ this.ampl = num;
+ }
+
+ double ampl;
+
+ public BartsNoise getColoredNoise() {
+ BartsNoise noise = new BartsNoise();
+ noise.setAmplitude(this.ampl);
+ return noise;
+ }
+ }
+
+ public BartsNoise(int octaves, double frequency, double amplitude, long seed) {
+ this.octaves = octaves;
+ this.frequency = frequency;
+ this.amplitude = amplitude;
+ this.seed = seed;
+ this.random = new XSTR(seed);
+ }
+
+ public BartsNoise() {
+ this.seed = new XSTR().nextLong();
+ this.random = new XSTR(this.seed);
+ this.octaves = 1;
+ this.frequency = this.random.nextGaussian();
+ this.amplitude = this.random.nextGaussian();
+ }
+
+ public BartsNoise(long seed) {
+ this.seed = seed;
+ this.random = new XSTR(seed);
+ this.octaves = 1;
+ this.frequency = this.random.nextGaussian();
+ this.amplitude = this.random.nextGaussian();
+ }
+
+ public BartsNoise copy() {
+ return new BartsNoise(this.octaves, this.frequency, this.amplitude, this.seed);
+ }
+
+ public BartsNoise copy(long seed) {
+ return new BartsNoise(this.octaves, this.frequency, this.amplitude, seed);
+ }
+
+ public double getCosNoise(double x, double y) {
+ double pr = x * this.frequency;
+ double r1 = Math.cos(pr);
+ if (r1 < 0) r1 = Math.abs(r1);
+ double result = Math.pow(r1, this.amplitude);
+ double pr2 = y * this.frequency;
+ double r2 = Math.cos(pr2);
+ if (r2 < 0) r2 = Math.abs(r2);
+ double result2 = Math.pow(r2, this.amplitude);
+ result *= result2;
+ if (result == Double.POSITIVE_INFINITY) result = Double.MAX_VALUE;
+ if (result == Double.NEGATIVE_INFINITY) result = Double.MIN_VALUE;
+ return MathUtils.wrap(result, 1D);
+ }
+
+ double getNonOctavedNoise(double x, double y) {
+ double phase = SimplexNoise
+ .noise(Math.pow(x * this.frequency, this.amplitude), Math.pow(y * this.frequency, this.amplitude));
+ return MathUtils.wrap(phase, 1);
+ }
+
+ public double getNeighbouringNoise(int x, int y) {
+ return (this.getNoiseSingle(x - 1, y - 1) + this.getNoiseSingle(x, y - 1)
+ + this.getNoiseSingle(x - 1, y)
+ + this.getNoiseSingle(x + 1, y)
+ + this.getNoiseSingle(x, y + 1)
+ + this.getNoiseSingle(x + 1, y + 1)
+ + this.getNoiseSingle(x - 1, y + 1)
+ + this.getNoiseSingle(x + 1, y - 1)) / 8;
+ }
+
+ public double getNoiseSingle(int x, int y) {
+ double result = 0;
+ for (double i = 1; i <= this.octaves; i++) {
+ result += 1d / i * this.getNonOctavedNoise(i * x, i * y);
+ }
+ return result;
+ }
+
+ @Override
+ public double getNoise(int x, int y) {
+ double result = 0;
+ for (double i = 1; i <= this.octaves; i++) {
+ result += 1d / i * this.getNonOctavedNoise(i * x, y);
+ }
+ // result = (this.getNeighbouringNoise(x,y)+result)/2;
+ return MathUtils.wrap(result, 1D);
+ }
+
+ @Override
+ public double[][] getNoiseForRegion(int xStart, int zStart, int xEnd, int zEnd) {
+ // double[][] results = new double[Math.abs(xEnd)-Math.abs(xStart)][Math.abs(zEnd)-Math.abs(zStart)];
+ // for (int i = xStart; i < xEnd; i++) {
+ // for (int j = zStart; j < zEnd; j++) {
+ // results
+ // }
+ // }
+ return new double[0][0];
+ }
+
+ @Override
+ public void setAmplitude(double amplitude) {
+ this.amplitude = amplitude;
+ }
+
+ @Override
+ public void setOctaves(int octaves) {
+ this.octaves = octaves;
+ }
+
+ @Override
+ public void setFrequency(double freq) {
+ this.frequency = freq;
+ }
+
+ @Override
+ public void setSeed(long seed) {
+ this.seed = seed;
+ }
+}
diff --git a/src/main/java/bartworks/util/NoiseUtil/SimplexNoise.java b/src/main/java/bartworks/util/NoiseUtil/SimplexNoise.java
new file mode 100644
index 0000000000..ea2e571910
--- /dev/null
+++ b/src/main/java/bartworks/util/NoiseUtil/SimplexNoise.java
@@ -0,0 +1,396 @@
+package bartworks.util.NoiseUtil;
+/*
+ * A speed-improved simplex noise algorithm for 2D, 3D and 4D in Java. Based on example code by Stefan Gustavson
+ * (stegu@itn.liu.se). Optimisations by Peter Eastman (peastman@drizzle.stanford.edu). Better rank ordering method by
+ * Stefan Gustavson in 2012. This could be speeded up even further, but it's useful as it is. Version 2012-03-09 This
+ * code was placed in the public domain by its original author, Stefan Gustavson. You may use it as you see fit, but
+ * attribution is appreciated.
+ */
+
+import bartworks.util.MathUtils;
+
+public class SimplexNoise { // Simplex noise in 2D, 3D and 4D
+
+ private static Grad[] grad3 = { new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0),
+ new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1), new Grad(0, 1, 1),
+ new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1) };
+
+ private static Grad[] grad4 = { new Grad(0, 1, 1, 1), new Grad(0, 1, 1, -1), new Grad(0, 1, -1, 1),
+ new Grad(0, 1, -1, -1), new Grad(0, -1, 1, 1), new Grad(0, -1, 1, -1), new Grad(0, -1, -1, 1),
+ new Grad(0, -1, -1, -1), new Grad(1, 0, 1, 1), new Grad(1, 0, 1, -1), new Grad(1, 0, -1, 1),
+ new Grad(1, 0, -1, -1), new Grad(-1, 0, 1, 1), new Grad(-1, 0, 1, -1), new Grad(-1, 0, -1, 1),
+ new Grad(-1, 0, -1, -1), new Grad(1, 1, 0, 1), new Grad(1, 1, 0, -1), new Grad(1, -1, 0, 1),
+ new Grad(1, -1, 0, -1), new Grad(-1, 1, 0, 1), new Grad(-1, 1, 0, -1), new Grad(-1, -1, 0, 1),
+ new Grad(-1, -1, 0, -1), new Grad(1, 1, 1, 0), new Grad(1, 1, -1, 0), new Grad(1, -1, 1, 0),
+ new Grad(1, -1, -1, 0), new Grad(-1, 1, 1, 0), new Grad(-1, 1, -1, 0), new Grad(-1, -1, 1, 0),
+ new Grad(-1, -1, -1, 0) };
+
+ private static short[] p = { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103,
+ 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117,
+ 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48,
+ 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102,
+ 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188,
+ 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82,
+ 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154,
+ 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185,
+ 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249,
+ 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138,
+ 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 };
+ // To remove the need for index wrapping, double the permutation table length
+ private static short[] perm = new short[512];
+ private static short[] permMod12 = new short[512];
+
+ static {
+ for (int i = 0; i < 512; i++) {
+ perm[i] = p[i & 255];
+ permMod12[i] = (short) (perm[i] % 12);
+ }
+ }
+
+ // Skewing and unskewing factors for 2, 3, and 4 dimensions
+ private static final double F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
+ private static final double G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
+ private static final double F3 = 1.0 / 3.0;
+ private static final double G3 = 1.0 / 6.0;
+ private static final double F4 = (Math.sqrt(5.0) - 1.0) / 4.0;
+ private static final double G4 = (5.0 - Math.sqrt(5.0)) / 20.0;
+
+ // This method is a *lot* faster than using (int)Math.floor(x)
+ private static int fastfloor(double x) {
+ return MathUtils.floorInt(x);
+ }
+
+ private static double dot(Grad g, double x, double y) {
+ return g.x * x + g.y * y;
+ }
+
+ private static double dot(Grad g, double x, double y, double z) {
+ return g.x * x + g.y * y + g.z * z;
+ }
+
+ private static double dot(Grad g, double x, double y, double z, double w) {
+ return g.x * x + g.y * y + g.z * z + g.w * w;
+ }
+
+ // 2D simplex noise
+ public static double noise(double xin, double yin) {
+ double n0, n1, n2; // Noise contributions from the three corners
+ // Skew the input space to determine which simplex cell we're in
+ double s = (xin + yin) * F2; // Hairy factor for 2D
+ int i = fastfloor(xin + s);
+ int j = fastfloor(yin + s);
+ double t = (i + j) * G2;
+ double X0 = i - t; // Unskew the cell origin back to (x,y) space
+ double Y0 = j - t;
+ double x0 = xin - X0; // The x,y distances from the cell origin
+ double y0 = yin - Y0;
+ // For the 2D case, the simplex shape is an equilateral triangle.
+ // Determine which simplex we are in.
+ int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
+ if (x0 > y0) {
+ i1 = 1;
+ j1 = 0;
+ } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
+ else {
+ i1 = 0;
+ j1 = 1;
+ } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
+ // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
+ // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
+ // c = (3-sqrt(3))/6
+ double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
+ double y1 = y0 - j1 + G2;
+ double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
+ double y2 = y0 - 1.0 + 2.0 * G2;
+ // Work out the hashed gradient indices of the three simplex corners
+ int ii = i & 255;
+ int jj = j & 255;
+ int gi0 = permMod12[ii + perm[jj]];
+ int gi1 = permMod12[ii + i1 + perm[jj + j1]];
+ int gi2 = permMod12[ii + 1 + perm[jj + 1]];
+ // Calculate the contribution from the three corners
+ double t0 = 0.5 - x0 * x0 - y0 * y0;
+ if (t0 < 0) n0 = 0.0;
+ else {
+ t0 *= t0;
+ n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
+ }
+ double t1 = 0.5 - x1 * x1 - y1 * y1;
+ if (t1 < 0) n1 = 0.0;
+ else {
+ t1 *= t1;
+ n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
+ }
+ double t2 = 0.5 - x2 * x2 - y2 * y2;
+ if (t2 < 0) n2 = 0.0;
+ else {
+ t2 *= t2;
+ n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
+ }
+ // Add contributions from each corner to get the final noise value.
+ // The result is scaled to return values in the interval [-1,1].
+ return 70.0 * (n0 + n1 + n2);
+ }
+
+ // 3D simplex noise
+ public static double noise(double xin, double yin, double zin) {
+ double n0, n1, n2, n3; // Noise contributions from the four corners
+ // Skew the input space to determine which simplex cell we're in
+ double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
+ int i = fastfloor(xin + s);
+ int j = fastfloor(yin + s);
+ int k = fastfloor(zin + s);
+ double t = (i + j + k) * G3;
+ double X0 = i - t; // Unskew the cell origin back to (x,y,z) space
+ double Y0 = j - t;
+ double Z0 = k - t;
+ double x0 = xin - X0; // The x,y,z distances from the cell origin
+ double y0 = yin - Y0;
+ double z0 = zin - Z0;
+ // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
+ // Determine which simplex we are in.
+ int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
+ int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
+ if (x0 >= y0) {
+ if (y0 >= z0) {
+ i1 = 1;
+ j1 = 0;
+ k1 = 0;
+ i2 = 1;
+ j2 = 1;
+ k2 = 0;
+ } // X Y Z order
+ else {
+ if (x0 >= z0) {
+ i1 = 1;
+ j1 = 0;
+ k1 = 0;
+ } // X Z Y order
+ else {
+ i1 = 0;
+ j1 = 0;
+ k1 = 1;
+ }
+ i2 = 1;
+ j2 = 0;
+ k2 = 1;
+ } // Z X Y order
+ } else if (y0 < z0) {
+ i1 = 0;
+ j1 = 0;
+ k1 = 1;
+ i2 = 0;
+ j2 = 1;
+ k2 = 1;
+ } // Z Y X order
+ else if (x0 < z0) {
+ i1 = 0;
+ j1 = 1;
+ k1 = 0;
+ i2 = 0;
+ j2 = 1;
+ k2 = 1;
+ } // Y Z X order
+ else {
+ i1 = 0;
+ j1 = 1;
+ k1 = 0;
+ i2 = 1;
+ j2 = 1;
+ k2 = 0;
+ } // Y X Z order
+ // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
+ // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
+ // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
+ // c = 1/6.
+ double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
+ double y1 = y0 - j1 + G3;
+ double z1 = z0 - k1 + G3;
+ double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
+ double y2 = y0 - j2 + 2.0 * G3;
+ double z2 = z0 - k2 + 2.0 * G3;
+ double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
+ double y3 = y0 - 1.0 + 3.0 * G3;
+ double z3 = z0 - 1.0 + 3.0 * G3;
+ // Work out the hashed gradient indices of the four simplex corners
+ int ii = i & 255;
+ int jj = j & 255;
+ int kk = k & 255;
+ int gi0 = permMod12[ii + perm[jj + perm[kk]]];
+ int gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]];
+ int gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]];
+ int gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]];
+ // Calculate the contribution from the four corners
+ double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
+ if (t0 < 0) n0 = 0.0;
+ else {
+ t0 *= t0;
+ n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
+ }
+ double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
+ if (t1 < 0) n1 = 0.0;
+ else {
+ t1 *= t1;
+ n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
+ }
+ double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
+ if (t2 < 0) n2 = 0.0;
+ else {
+ t2 *= t2;
+ n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
+ }
+ double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
+ if (t3 < 0) n3 = 0.0;
+ else {
+ t3 *= t3;
+ n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
+ }
+ // Add contributions from each corner to get the final noise value.
+ // The result is scaled to stay just inside [-1,1]
+ return 32.0 * (n0 + n1 + n2 + n3);
+ }
+
+ // 4D simplex noise, better simplex rank ordering method 2012-03-09
+ public static double noise(double x, double y, double z, double w) {
+
+ double n0, n1, n2, n3, n4; // Noise contributions from the five corners
+ // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
+ double s = (x + y + z + w) * F4; // Factor for 4D skewing
+ int i = fastfloor(x + s);
+ int j = fastfloor(y + s);
+ int k = fastfloor(z + s);
+ int l = fastfloor(w + s);
+ double t = (i + j + k + l) * G4; // Factor for 4D unskewing
+ double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
+ double Y0 = j - t;
+ double Z0 = k - t;
+ double W0 = l - t;
+ double x0 = x - X0; // The x,y,z,w distances from the cell origin
+ double y0 = y - Y0;
+ double z0 = z - Z0;
+ double w0 = w - W0;
+ // For the 4D case, the simplex is a 4D shape I won't even try to describe.
+ // To find out which of the 24 possible simplices we're in, we need to
+ // determine the magnitude ordering of x0, y0, z0 and w0.
+ // Six pair-wise comparisons are performed between each possible pair
+ // of the four coordinates, and the results are used to rank the numbers.
+ int rankx = 0;
+ int ranky = 0;
+ int rankz = 0;
+ int rankw = 0;
+ if (x0 > y0) rankx++;
+ else ranky++;
+ if (x0 > z0) rankx++;
+ else rankz++;
+ if (x0 > w0) rankx++;
+ else rankw++;
+ if (y0 > z0) ranky++;
+ else rankz++;
+ if (y0 > w0) ranky++;
+ else rankw++;
+ if (z0 > w0) rankz++;
+ else rankw++;
+ int i1, j1, k1, l1; // The integer offsets for the second simplex corner
+ int i2, j2, k2, l2; // The integer offsets for the third simplex corner
+ int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
+ // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
+ // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
+ // impossible. Only the 24 indices which have non-zero entries make any sense.
+ // We use a thresholding to set the coordinates in turn from the largest magnitude.
+ // Rank 3 denotes the largest coordinate.
+ i1 = rankx >= 3 ? 1 : 0;
+ j1 = ranky >= 3 ? 1 : 0;
+ k1 = rankz >= 3 ? 1 : 0;
+ l1 = rankw >= 3 ? 1 : 0;
+ // Rank 2 denotes the second largest coordinate.
+ i2 = rankx >= 2 ? 1 : 0;
+ j2 = ranky >= 2 ? 1 : 0;
+ k2 = rankz >= 2 ? 1 : 0;
+ l2 = rankw >= 2 ? 1 : 0;
+ // Rank 1 denotes the second smallest coordinate.
+ i3 = rankx >= 1 ? 1 : 0;
+ j3 = ranky >= 1 ? 1 : 0;
+ k3 = rankz >= 1 ? 1 : 0;
+ l3 = rankw >= 1 ? 1 : 0;
+ // The fifth corner has all coordinate offsets = 1, so no need to compute that.
+ double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
+ double y1 = y0 - j1 + G4;
+ double z1 = z0 - k1 + G4;
+ double w1 = w0 - l1 + G4;
+ double x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
+ double y2 = y0 - j2 + 2.0 * G4;
+ double z2 = z0 - k2 + 2.0 * G4;
+ double w2 = w0 - l2 + 2.0 * G4;
+ double x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
+ double y3 = y0 - j3 + 3.0 * G4;
+ double z3 = z0 - k3 + 3.0 * G4;
+ double w3 = w0 - l3 + 3.0 * G4;
+ double x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
+ double y4 = y0 - 1.0 + 4.0 * G4;
+ double z4 = z0 - 1.0 + 4.0 * G4;
+ double w4 = w0 - 1.0 + 4.0 * G4;
+ // Work out the hashed gradient indices of the five simplex corners
+ int ii = i & 255;
+ int jj = j & 255;
+ int kk = k & 255;
+ int ll = l & 255;
+ int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32;
+ int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32;
+ int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32;
+ int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32;
+ int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;
+ // Calculate the contribution from the five corners
+ double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
+ if (t0 < 0) n0 = 0.0;
+ else {
+ t0 *= t0;
+ n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
+ }
+ double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
+ if (t1 < 0) n1 = 0.0;
+ else {
+ t1 *= t1;
+ n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
+ }
+ double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
+ if (t2 < 0) n2 = 0.0;
+ else {
+ t2 *= t2;
+ n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
+ }
+ double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
+ if (t3 < 0) n3 = 0.0;
+ else {
+ t3 *= t3;
+ n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
+ }
+ double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
+ if (t4 < 0) n4 = 0.0;
+ else {
+ t4 *= t4;
+ n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
+ }
+ // Sum up and scale the result to cover the range [-1,1]
+ return 27.0 * (n0 + n1 + n2 + n3 + n4);
+ }
+
+ // Inner class to speed upp gradient computations
+ // (array access is a lot slower than member access)
+ private static class Grad {
+
+ double x, y, z, w;
+
+ Grad(double x, double y, double z) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ }
+
+ Grad(double x, double y, double z, double w) {
+ this.x = x;
+ this.y = y;
+ this.z = z;
+ this.w = w;
+ }
+ }
+}