diff options
| author | NotAPenguin <michiel.vandeginste@gmail.com> | 2024-09-02 23:17:17 +0200 |
|---|---|---|
| committer | GitHub <noreply@github.com> | 2024-09-02 23:17:17 +0200 |
| commit | 1b820de08a05070909a267e17f033fcf58ac8710 (patch) | |
| tree | 02831a025986a06b20f87e5bcc69d1e0c639a342 /src/main/java/bartworks/util/NoiseUtil | |
| parent | afd3fd92b6a6ab9ab0d0dc3214e6bc8ff7a86c9b (diff) | |
| download | GT5-Unofficial-1b820de08a05070909a267e17f033fcf58ac8710.tar.gz GT5-Unofficial-1b820de08a05070909a267e17f033fcf58ac8710.tar.bz2 GT5-Unofficial-1b820de08a05070909a267e17f033fcf58ac8710.zip | |
The Great Renaming (#3014)
* move kekztech to a single root dir
* move detrav to a single root dir
* move gtnh-lanthanides to a single root dir
* move tectech and delete some gross reflection in gt++
* remove more reflection inside gt5u
* delete more reflection in gt++
* fix imports
* move bartworks and bwcrossmod
* fix proxies
* move galactigreg and ggfab
* move gtneioreplugin
* try to fix gt++ bee loader
* apply the rename rules to BW
* apply rename rules to bwcrossmod
* apply rename rules to detrav scanner mod
* apply rename rules to galacticgreg
* apply rename rules to ggfab
* apply rename rules to goodgenerator
* apply rename rules to gtnh-lanthanides
* apply rename rules to gt++
* apply rename rules to kekztech
* apply rename rules to kubatech
* apply rename rules to tectech
* apply rename rules to gt
apply the rename rules to gt
* fix tt import
* fix mui hopefully
* fix coremod except intergalactic
* rename assline recipe class
* fix a class name i stumbled on
* rename StructureUtility to GTStructureUtility to prevent conflict with structurelib
* temporary rename of GTTooltipDataCache to old name
* fix gt client/server proxy names
Diffstat (limited to 'src/main/java/bartworks/util/NoiseUtil')
| -rw-r--r-- | src/main/java/bartworks/util/NoiseUtil/BartsNoise.java | 171 | ||||
| -rw-r--r-- | src/main/java/bartworks/util/NoiseUtil/SimplexNoise.java | 396 |
2 files changed, 567 insertions, 0 deletions
diff --git a/src/main/java/bartworks/util/NoiseUtil/BartsNoise.java b/src/main/java/bartworks/util/NoiseUtil/BartsNoise.java new file mode 100644 index 0000000000..2130f27ccd --- /dev/null +++ b/src/main/java/bartworks/util/NoiseUtil/BartsNoise.java @@ -0,0 +1,171 @@ +/* + * Copyright (c) 2018-2019 bartimaeusnek Permission is hereby granted, free of charge, to any person obtaining a copy of + * this software and associated documentation files (the "Software"), to deal in the Software without restriction, + * including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following + * conditions: The above copyright notice and this permission notice shall be included in all copies or substantial + * portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, + * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +package bartworks.util.NoiseUtil; + +import java.util.Random; + +import bartworks.API.INoiseGen; +import bartworks.util.MathUtils; +import gregtech.api.objects.XSTR; + +public class BartsNoise implements INoiseGen { + + public void setUsePhase(boolean usePhase) { + this.usePhase = usePhase; + } + + public void setRandom(Random random) { + this.random = random; + } + + boolean usePhase; + int octaves; + double frequency; + double amplitude; + long seed; + Random random; + + public enum NoiseColor { + + Red(-1), + Pink(-0.5), + White(0), + Blue(0.5), + Violet(1); + + NoiseColor(double num) { + this.ampl = num; + } + + double ampl; + + public BartsNoise getColoredNoise() { + BartsNoise noise = new BartsNoise(); + noise.setAmplitude(this.ampl); + return noise; + } + } + + public BartsNoise(int octaves, double frequency, double amplitude, long seed) { + this.octaves = octaves; + this.frequency = frequency; + this.amplitude = amplitude; + this.seed = seed; + this.random = new XSTR(seed); + } + + public BartsNoise() { + this.seed = new XSTR().nextLong(); + this.random = new XSTR(this.seed); + this.octaves = 1; + this.frequency = this.random.nextGaussian(); + this.amplitude = this.random.nextGaussian(); + } + + public BartsNoise(long seed) { + this.seed = seed; + this.random = new XSTR(seed); + this.octaves = 1; + this.frequency = this.random.nextGaussian(); + this.amplitude = this.random.nextGaussian(); + } + + public BartsNoise copy() { + return new BartsNoise(this.octaves, this.frequency, this.amplitude, this.seed); + } + + public BartsNoise copy(long seed) { + return new BartsNoise(this.octaves, this.frequency, this.amplitude, seed); + } + + public double getCosNoise(double x, double y) { + double pr = x * this.frequency; + double r1 = Math.cos(pr); + if (r1 < 0) r1 = Math.abs(r1); + double result = Math.pow(r1, this.amplitude); + double pr2 = y * this.frequency; + double r2 = Math.cos(pr2); + if (r2 < 0) r2 = Math.abs(r2); + double result2 = Math.pow(r2, this.amplitude); + result *= result2; + if (result == Double.POSITIVE_INFINITY) result = Double.MAX_VALUE; + if (result == Double.NEGATIVE_INFINITY) result = Double.MIN_VALUE; + return MathUtils.wrap(result, 1D); + } + + double getNonOctavedNoise(double x, double y) { + double phase = SimplexNoise + .noise(Math.pow(x * this.frequency, this.amplitude), Math.pow(y * this.frequency, this.amplitude)); + return MathUtils.wrap(phase, 1); + } + + public double getNeighbouringNoise(int x, int y) { + return (this.getNoiseSingle(x - 1, y - 1) + this.getNoiseSingle(x, y - 1) + + this.getNoiseSingle(x - 1, y) + + this.getNoiseSingle(x + 1, y) + + this.getNoiseSingle(x, y + 1) + + this.getNoiseSingle(x + 1, y + 1) + + this.getNoiseSingle(x - 1, y + 1) + + this.getNoiseSingle(x + 1, y - 1)) / 8; + } + + public double getNoiseSingle(int x, int y) { + double result = 0; + for (double i = 1; i <= this.octaves; i++) { + result += 1d / i * this.getNonOctavedNoise(i * x, i * y); + } + return result; + } + + @Override + public double getNoise(int x, int y) { + double result = 0; + for (double i = 1; i <= this.octaves; i++) { + result += 1d / i * this.getNonOctavedNoise(i * x, y); + } + // result = (this.getNeighbouringNoise(x,y)+result)/2; + return MathUtils.wrap(result, 1D); + } + + @Override + public double[][] getNoiseForRegion(int xStart, int zStart, int xEnd, int zEnd) { + // double[][] results = new double[Math.abs(xEnd)-Math.abs(xStart)][Math.abs(zEnd)-Math.abs(zStart)]; + // for (int i = xStart; i < xEnd; i++) { + // for (int j = zStart; j < zEnd; j++) { + // results + // } + // } + return new double[0][0]; + } + + @Override + public void setAmplitude(double amplitude) { + this.amplitude = amplitude; + } + + @Override + public void setOctaves(int octaves) { + this.octaves = octaves; + } + + @Override + public void setFrequency(double freq) { + this.frequency = freq; + } + + @Override + public void setSeed(long seed) { + this.seed = seed; + } +} diff --git a/src/main/java/bartworks/util/NoiseUtil/SimplexNoise.java b/src/main/java/bartworks/util/NoiseUtil/SimplexNoise.java new file mode 100644 index 0000000000..ea2e571910 --- /dev/null +++ b/src/main/java/bartworks/util/NoiseUtil/SimplexNoise.java @@ -0,0 +1,396 @@ +package bartworks.util.NoiseUtil; +/* + * A speed-improved simplex noise algorithm for 2D, 3D and 4D in Java. Based on example code by Stefan Gustavson + * (stegu@itn.liu.se). Optimisations by Peter Eastman (peastman@drizzle.stanford.edu). Better rank ordering method by + * Stefan Gustavson in 2012. This could be speeded up even further, but it's useful as it is. Version 2012-03-09 This + * code was placed in the public domain by its original author, Stefan Gustavson. You may use it as you see fit, but + * attribution is appreciated. + */ + +import bartworks.util.MathUtils; + +public class SimplexNoise { // Simplex noise in 2D, 3D and 4D + + private static Grad[] grad3 = { new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0), + new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1), new Grad(0, 1, 1), + new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1) }; + + private static Grad[] grad4 = { new Grad(0, 1, 1, 1), new Grad(0, 1, 1, -1), new Grad(0, 1, -1, 1), + new Grad(0, 1, -1, -1), new Grad(0, -1, 1, 1), new Grad(0, -1, 1, -1), new Grad(0, -1, -1, 1), + new Grad(0, -1, -1, -1), new Grad(1, 0, 1, 1), new Grad(1, 0, 1, -1), new Grad(1, 0, -1, 1), + new Grad(1, 0, -1, -1), new Grad(-1, 0, 1, 1), new Grad(-1, 0, 1, -1), new Grad(-1, 0, -1, 1), + new Grad(-1, 0, -1, -1), new Grad(1, 1, 0, 1), new Grad(1, 1, 0, -1), new Grad(1, -1, 0, 1), + new Grad(1, -1, 0, -1), new Grad(-1, 1, 0, 1), new Grad(-1, 1, 0, -1), new Grad(-1, -1, 0, 1), + new Grad(-1, -1, 0, -1), new Grad(1, 1, 1, 0), new Grad(1, 1, -1, 0), new Grad(1, -1, 1, 0), + new Grad(1, -1, -1, 0), new Grad(-1, 1, 1, 0), new Grad(-1, 1, -1, 0), new Grad(-1, -1, 1, 0), + new Grad(-1, -1, -1, 0) }; + + private static short[] p = { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, + 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, + 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, + 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, + 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, + 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, + 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, + 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, + 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, + 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, + 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 }; + // To remove the need for index wrapping, double the permutation table length + private static short[] perm = new short[512]; + private static short[] permMod12 = new short[512]; + + static { + for (int i = 0; i < 512; i++) { + perm[i] = p[i & 255]; + permMod12[i] = (short) (perm[i] % 12); + } + } + + // Skewing and unskewing factors for 2, 3, and 4 dimensions + private static final double F2 = 0.5 * (Math.sqrt(3.0) - 1.0); + private static final double G2 = (3.0 - Math.sqrt(3.0)) / 6.0; + private static final double F3 = 1.0 / 3.0; + private static final double G3 = 1.0 / 6.0; + private static final double F4 = (Math.sqrt(5.0) - 1.0) / 4.0; + private static final double G4 = (5.0 - Math.sqrt(5.0)) / 20.0; + + // This method is a *lot* faster than using (int)Math.floor(x) + private static int fastfloor(double x) { + return MathUtils.floorInt(x); + } + + private static double dot(Grad g, double x, double y) { + return g.x * x + g.y * y; + } + + private static double dot(Grad g, double x, double y, double z) { + return g.x * x + g.y * y + g.z * z; + } + + private static double dot(Grad g, double x, double y, double z, double w) { + return g.x * x + g.y * y + g.z * z + g.w * w; + } + + // 2D simplex noise + public static double noise(double xin, double yin) { + double n0, n1, n2; // Noise contributions from the three corners + // Skew the input space to determine which simplex cell we're in + double s = (xin + yin) * F2; // Hairy factor for 2D + int i = fastfloor(xin + s); + int j = fastfloor(yin + s); + double t = (i + j) * G2; + double X0 = i - t; // Unskew the cell origin back to (x,y) space + double Y0 = j - t; + double x0 = xin - X0; // The x,y distances from the cell origin + double y0 = yin - Y0; + // For the 2D case, the simplex shape is an equilateral triangle. + // Determine which simplex we are in. + int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords + if (x0 > y0) { + i1 = 1; + j1 = 0; + } // lower triangle, XY order: (0,0)->(1,0)->(1,1) + else { + i1 = 0; + j1 = 1; + } // upper triangle, YX order: (0,0)->(0,1)->(1,1) + // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and + // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where + // c = (3-sqrt(3))/6 + double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords + double y1 = y0 - j1 + G2; + double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords + double y2 = y0 - 1.0 + 2.0 * G2; + // Work out the hashed gradient indices of the three simplex corners + int ii = i & 255; + int jj = j & 255; + int gi0 = permMod12[ii + perm[jj]]; + int gi1 = permMod12[ii + i1 + perm[jj + j1]]; + int gi2 = permMod12[ii + 1 + perm[jj + 1]]; + // Calculate the contribution from the three corners + double t0 = 0.5 - x0 * x0 - y0 * y0; + if (t0 < 0) n0 = 0.0; + else { + t0 *= t0; + n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient + } + double t1 = 0.5 - x1 * x1 - y1 * y1; + if (t1 < 0) n1 = 0.0; + else { + t1 *= t1; + n1 = t1 * t1 * dot(grad3[gi1], x1, y1); + } + double t2 = 0.5 - x2 * x2 - y2 * y2; + if (t2 < 0) n2 = 0.0; + else { + t2 *= t2; + n2 = t2 * t2 * dot(grad3[gi2], x2, y2); + } + // Add contributions from each corner to get the final noise value. + // The result is scaled to return values in the interval [-1,1]. + return 70.0 * (n0 + n1 + n2); + } + + // 3D simplex noise + public static double noise(double xin, double yin, double zin) { + double n0, n1, n2, n3; // Noise contributions from the four corners + // Skew the input space to determine which simplex cell we're in + double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D + int i = fastfloor(xin + s); + int j = fastfloor(yin + s); + int k = fastfloor(zin + s); + double t = (i + j + k) * G3; + double X0 = i - t; // Unskew the cell origin back to (x,y,z) space + double Y0 = j - t; + double Z0 = k - t; + double x0 = xin - X0; // The x,y,z distances from the cell origin + double y0 = yin - Y0; + double z0 = zin - Z0; + // For the 3D case, the simplex shape is a slightly irregular tetrahedron. + // Determine which simplex we are in. + int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords + int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords + if (x0 >= y0) { + if (y0 >= z0) { + i1 = 1; + j1 = 0; + k1 = 0; + i2 = 1; + j2 = 1; + k2 = 0; + } // X Y Z order + else { + if (x0 >= z0) { + i1 = 1; + j1 = 0; + k1 = 0; + } // X Z Y order + else { + i1 = 0; + j1 = 0; + k1 = 1; + } + i2 = 1; + j2 = 0; + k2 = 1; + } // Z X Y order + } else if (y0 < z0) { + i1 = 0; + j1 = 0; + k1 = 1; + i2 = 0; + j2 = 1; + k2 = 1; + } // Z Y X order + else if (x0 < z0) { + i1 = 0; + j1 = 1; + k1 = 0; + i2 = 0; + j2 = 1; + k2 = 1; + } // Y Z X order + else { + i1 = 0; + j1 = 1; + k1 = 0; + i2 = 1; + j2 = 1; + k2 = 0; + } // Y X Z order + // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), + // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and + // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where + // c = 1/6. + double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords + double y1 = y0 - j1 + G3; + double z1 = z0 - k1 + G3; + double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords + double y2 = y0 - j2 + 2.0 * G3; + double z2 = z0 - k2 + 2.0 * G3; + double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords + double y3 = y0 - 1.0 + 3.0 * G3; + double z3 = z0 - 1.0 + 3.0 * G3; + // Work out the hashed gradient indices of the four simplex corners + int ii = i & 255; + int jj = j & 255; + int kk = k & 255; + int gi0 = permMod12[ii + perm[jj + perm[kk]]]; + int gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]]; + int gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]]; + int gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]]; + // Calculate the contribution from the four corners + double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; + if (t0 < 0) n0 = 0.0; + else { + t0 *= t0; + n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0); + } + double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; + if (t1 < 0) n1 = 0.0; + else { + t1 *= t1; + n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1); + } + double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; + if (t2 < 0) n2 = 0.0; + else { + t2 *= t2; + n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2); + } + double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; + if (t3 < 0) n3 = 0.0; + else { + t3 *= t3; + n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3); + } + // Add contributions from each corner to get the final noise value. + // The result is scaled to stay just inside [-1,1] + return 32.0 * (n0 + n1 + n2 + n3); + } + + // 4D simplex noise, better simplex rank ordering method 2012-03-09 + public static double noise(double x, double y, double z, double w) { + + double n0, n1, n2, n3, n4; // Noise contributions from the five corners + // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in + double s = (x + y + z + w) * F4; // Factor for 4D skewing + int i = fastfloor(x + s); + int j = fastfloor(y + s); + int k = fastfloor(z + s); + int l = fastfloor(w + s); + double t = (i + j + k + l) * G4; // Factor for 4D unskewing + double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space + double Y0 = j - t; + double Z0 = k - t; + double W0 = l - t; + double x0 = x - X0; // The x,y,z,w distances from the cell origin + double y0 = y - Y0; + double z0 = z - Z0; + double w0 = w - W0; + // For the 4D case, the simplex is a 4D shape I won't even try to describe. + // To find out which of the 24 possible simplices we're in, we need to + // determine the magnitude ordering of x0, y0, z0 and w0. + // Six pair-wise comparisons are performed between each possible pair + // of the four coordinates, and the results are used to rank the numbers. + int rankx = 0; + int ranky = 0; + int rankz = 0; + int rankw = 0; + if (x0 > y0) rankx++; + else ranky++; + if (x0 > z0) rankx++; + else rankz++; + if (x0 > w0) rankx++; + else rankw++; + if (y0 > z0) ranky++; + else rankz++; + if (y0 > w0) ranky++; + else rankw++; + if (z0 > w0) rankz++; + else rankw++; + int i1, j1, k1, l1; // The integer offsets for the second simplex corner + int i2, j2, k2, l2; // The integer offsets for the third simplex corner + int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner + // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. + // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w + // impossible. Only the 24 indices which have non-zero entries make any sense. + // We use a thresholding to set the coordinates in turn from the largest magnitude. + // Rank 3 denotes the largest coordinate. + i1 = rankx >= 3 ? 1 : 0; + j1 = ranky >= 3 ? 1 : 0; + k1 = rankz >= 3 ? 1 : 0; + l1 = rankw >= 3 ? 1 : 0; + // Rank 2 denotes the second largest coordinate. + i2 = rankx >= 2 ? 1 : 0; + j2 = ranky >= 2 ? 1 : 0; + k2 = rankz >= 2 ? 1 : 0; + l2 = rankw >= 2 ? 1 : 0; + // Rank 1 denotes the second smallest coordinate. + i3 = rankx >= 1 ? 1 : 0; + j3 = ranky >= 1 ? 1 : 0; + k3 = rankz >= 1 ? 1 : 0; + l3 = rankw >= 1 ? 1 : 0; + // The fifth corner has all coordinate offsets = 1, so no need to compute that. + double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords + double y1 = y0 - j1 + G4; + double z1 = z0 - k1 + G4; + double w1 = w0 - l1 + G4; + double x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords + double y2 = y0 - j2 + 2.0 * G4; + double z2 = z0 - k2 + 2.0 * G4; + double w2 = w0 - l2 + 2.0 * G4; + double x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords + double y3 = y0 - j3 + 3.0 * G4; + double z3 = z0 - k3 + 3.0 * G4; + double w3 = w0 - l3 + 3.0 * G4; + double x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords + double y4 = y0 - 1.0 + 4.0 * G4; + double z4 = z0 - 1.0 + 4.0 * G4; + double w4 = w0 - 1.0 + 4.0 * G4; + // Work out the hashed gradient indices of the five simplex corners + int ii = i & 255; + int jj = j & 255; + int kk = k & 255; + int ll = l & 255; + int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32; + int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32; + int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32; + int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32; + int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32; + // Calculate the contribution from the five corners + double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; + if (t0 < 0) n0 = 0.0; + else { + t0 *= t0; + n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0); + } + double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; + if (t1 < 0) n1 = 0.0; + else { + t1 *= t1; + n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1); + } + double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; + if (t2 < 0) n2 = 0.0; + else { + t2 *= t2; + n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2); + } + double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; + if (t3 < 0) n3 = 0.0; + else { + t3 *= t3; + n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3); + } + double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; + if (t4 < 0) n4 = 0.0; + else { + t4 *= t4; + n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4); + } + // Sum up and scale the result to cover the range [-1,1] + return 27.0 * (n0 + n1 + n2 + n3 + n4); + } + + // Inner class to speed upp gradient computations + // (array access is a lot slower than member access) + private static class Grad { + + double x, y, z, w; + + Grad(double x, double y, double z) { + this.x = x; + this.y = y; + this.z = z; + } + + Grad(double x, double y, double z, double w) { + this.x = x; + this.y = y; + this.z = z; + this.w = w; + } + } +} |
