aboutsummaryrefslogtreecommitdiff
path: root/src/main/java/ch/obermuhlner/math/big/BigComplexMath.java
diff options
context:
space:
mode:
authorTec <daniel112092@gmail.com>2020-07-18 22:49:35 +0200
committerTec <daniel112092@gmail.com>2020-07-18 22:49:35 +0200
commit11e50eb56f6750d6bdfe15b986eef55e27452211 (patch)
treef6d4e90967e76c2fa2f988a823340fa85b9a604b /src/main/java/ch/obermuhlner/math/big/BigComplexMath.java
parent5c68b296e1b499ca83d78f24837768ac3a75df62 (diff)
downloadGT5-Unofficial-11e50eb56f6750d6bdfe15b986eef55e27452211.tar.gz
GT5-Unofficial-11e50eb56f6750d6bdfe15b986eef55e27452211.tar.bz2
GT5-Unofficial-11e50eb56f6750d6bdfe15b986eef55e27452211.zip
Implement big float, transition to molarity
Diffstat (limited to 'src/main/java/ch/obermuhlner/math/big/BigComplexMath.java')
-rw-r--r--src/main/java/ch/obermuhlner/math/big/BigComplexMath.java413
1 files changed, 413 insertions, 0 deletions
diff --git a/src/main/java/ch/obermuhlner/math/big/BigComplexMath.java b/src/main/java/ch/obermuhlner/math/big/BigComplexMath.java
new file mode 100644
index 0000000000..a73d9bccdd
--- /dev/null
+++ b/src/main/java/ch/obermuhlner/math/big/BigComplexMath.java
@@ -0,0 +1,413 @@
+package ch.obermuhlner.math.big;
+
+import java.math.BigDecimal;
+import java.math.MathContext;
+import java.util.List;
+
+import static ch.obermuhlner.math.big.BigComplex.I;
+
+/**
+ * Provides advanced functions operating on {@link BigComplex}s.
+ */
+public class BigComplexMath {
+
+ private static final BigDecimal TWO = BigDecimal.valueOf(2);
+
+ /**
+ * Calculates the reciprocal of the given complex number using the specified {@link MathContext}.
+ *
+ * @param x the complex number to calculate the reciprocal
+ * @param mathContext the {@link MathContext} used to calculate the result
+ * @return the calculated {@link BigComplex} result
+ * @see BigComplex#reciprocal(MathContext)
+ */
+ public static BigComplex reciprocal(BigComplex x, MathContext mathContext) {
+ return x.reciprocal(mathContext);
+ }
+
+ /**
+ * Calculates the conjugate of the given complex number using the specified {@link MathContext}.
+ *
+ * @param x the complex number to calculate the conjugate
+ * @return the calculated {@link BigComplex} result
+ * @see BigComplex#conjugate()
+ */
+ public static BigComplex conjugate(BigComplex x) {
+ return x.conjugate();
+ }
+
+ /**
+ * Calculates the absolute value (also known as magnitude, length or radius) of the given complex number using the specified {@link MathContext}.
+ *
+ * @param x the complex number to calculate the absolute value
+ * @param mathContext the {@link MathContext} used to calculate the result
+ * @return the calculated {@link BigComplex} result
+ * @see BigComplex#abs(MathContext)
+ */
+ public static BigDecimal abs(BigComplex x, MathContext mathContext) {
+ return x.abs(mathContext);
+ }
+
+ /**
+ * Calculates the square of the absolute value (also known as magnitude, length or radius) of the given complex number using the specified {@link MathContext}.
+ *
+ * @param x the complex number to calculate the square of the absolute value
+ * @param mathContext the {@link MathContext} used to calculate the result
+ * @return the calculated {@link BigComplex} result
+ * @see BigComplex#absSquare(MathContext)
+ */
+ public static BigDecimal absSquare(BigComplex x, MathContext mathContext) {
+ return x.absSquare(mathContext);
+ }
+
+ /**
+ * Calculates the angle in radians of the given complex number using the specified {@link MathContext}.
+ *
+ * @param x the complex number to calculate the angle
+ * @param mathContext the {@link MathContext} used to calculate the result
+ * @return the calculated {@link BigComplex} angle in radians
+ * @see BigComplex#angle(MathContext)
+ */
+ public static BigDecimal angle(BigComplex x, MathContext mathContext) {
+ return x.angle(mathContext);
+ }
+
+ /**
+ * Calculates the factorial of the specified {@link BigComplex}.
+ *
+ * <p>This implementation uses
+ * <a href="https://en.wikipedia.org/wiki/Spouge%27s_approximation">Spouge's approximation</a>
+ * to calculate the factorial for non-integer values.</p>
+ *
+ * <p>This involves calculating a series of constants that depend on the desired precision.
+ * Since this constant calculation is quite expensive (especially for higher precisions),
+ * the constants for a specific precision will be cached
+ * and subsequent calls to this method with the same precision will be much faster.</p>
+ *
+ * <p>It is therefore recommended to do one call to this method with the standard precision of your application during the startup phase
+ * and to avoid calling it with many different precisions.</p>
+ *
+ * <p>See: <a href="https://en.wikipedia.org/wiki/Factorial#Extension_of_factorial_to_non-integer_values_of_argument">Wikipedia: Factorial - Extension of factorial to non-integer values of argument</a></p>
+ *
+ * @param x the {@link BigComplex}
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the factorial {@link BigComplex}
+ * @throws ArithmeticException if x is a negative integer value (-1, -2, -3, ...)
+ * @see BigDecimalMath#factorial(BigDecimal, MathContext)
+ * @see #gamma(BigComplex, MathContext)
+ */
+ public static BigComplex factorial(BigComplex x, MathContext mathContext) {
+ if (x.isReal() && BigDecimalMath.isIntValue(x.re)) {
+ return BigComplex.valueOf(BigDecimalMath.factorial(x.re.intValueExact()).round(mathContext));
+ }
+
+ // https://en.wikipedia.org/wiki/Spouge%27s_approximation
+ MathContext mc = new MathContext(mathContext.getPrecision() * 2, mathContext.getRoundingMode());
+
+ int a = mathContext.getPrecision() * 13 / 10;
+ List<BigDecimal> constants = BigDecimalMath.getSpougeFactorialConstants(a);
+
+ BigDecimal bigA = BigDecimal.valueOf(a);
+
+ boolean negative = false;
+ BigComplex factor = BigComplex.valueOf(constants.get(0));
+ for (int k = 1; k < a; k++) {
+ BigDecimal bigK = BigDecimal.valueOf(k);
+ factor = factor.add(BigComplex.valueOf(constants.get(k)).divide(x.add(bigK), mc), mc);
+ negative = !negative;
+ }
+
+ BigComplex result = pow(x.add(bigA, mc), x.add(BigDecimal.valueOf(0.5), mc), mc);
+ result = result.multiply(exp(x.negate().subtract(bigA, mc), mc), mc);
+ result = result.multiply(factor, mc);
+
+ return result.round(mathContext);
+ }
+
+ /**
+ * Calculates the gamma function of the specified {@link BigComplex}.
+ *
+ * <p>This implementation uses {@link #factorial(BigComplex, MathContext)} internally,
+ * therefore the performance implications described there apply also for this method.
+ *
+ * <p>See: <a href="https://en.wikipedia.org/wiki/Gamma_function">Wikipedia: Gamma function</a></p>
+ *
+ * @param x the {@link BigComplex}
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the gamma {@link BigComplex}
+ * @throws ArithmeticException if x-1 is a negative integer value (-1, -2, -3, ...)
+ * @see BigDecimalMath#gamma(BigDecimal, MathContext)
+ * @see #factorial(BigComplex, MathContext)
+ */
+ public static BigComplex gamma(BigComplex x, MathContext mathContext) {
+ return factorial(x.subtract(BigComplex.ONE), mathContext);
+ }
+
+
+ /**
+ * Calculates the natural exponent of {@link BigComplex} x (e<sup>x</sup>) in the complex domain.
+ *
+ * <p>See: <a href="https://en.wikipedia.org/wiki/Exponential_function#Complex_plane">Wikipedia: Exponent (Complex plane)</a></p>
+ *
+ * @param x the {@link BigComplex} to calculate the exponent for
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated exponent {@link BigComplex} with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex exp(BigComplex x, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ BigDecimal expRe = BigDecimalMath.exp(x.re, mc);
+ return BigComplex.valueOf(
+ expRe.multiply(BigDecimalMath.cos(x.im, mc), mc).round(mathContext),
+ expRe.multiply(BigDecimalMath.sin(x.im, mc), mc)).round(mathContext);
+ }
+
+ /**
+ * Calculates the sine (sinus) of {@link BigComplex} x in the complex domain.
+ *
+ * <p>See: <a href="https://en.wikipedia.org/wiki/Sine#Sine_with_a_complex_argument">Wikipedia: Sine (Sine with a complex argument)</a></p>
+ *
+ * @param x the {@link BigComplex} to calculate the sine for
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated sine {@link BigComplex} with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex sin(BigComplex x, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ return BigComplex.valueOf(
+ BigDecimalMath.sin(x.re, mc).multiply(BigDecimalMath.cosh(x.im, mc), mc).round(mathContext),
+ BigDecimalMath.cos(x.re, mc).multiply(BigDecimalMath.sinh(x.im, mc), mc).round(mathContext));
+ }
+
+ /**
+ * Calculates the cosine (cosinus) of {@link BigComplex} x in the complex domain.
+ *
+ * @param x the {@link BigComplex} to calculate the cosine for
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated cosine {@link BigComplex} with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex cos(BigComplex x, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ return BigComplex.valueOf(
+ BigDecimalMath.cos(x.re, mc).multiply(BigDecimalMath.cosh(x.im, mc), mc).round(mathContext),
+ BigDecimalMath.sin(x.re, mc).multiply(BigDecimalMath.sinh(x.im, mc), mc).negate().round(mathContext));
+ }
+
+ //
+ // http://scipp.ucsc.edu/~haber/archives/physics116A10/arc_10.pdf
+
+ /**
+ * Calculates the tangens of {@link BigComplex} x in the complex domain.
+ *
+ * @param x the {@link BigComplex} to calculate the tangens for
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated tangens {@link BigComplex} with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex tan(BigComplex x, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ return sin(x, mc).divide(cos(x, mc), mc).round(mathContext);
+ }
+
+ /**
+ * Calculates the arc tangens (inverted tangens) of {@link BigComplex} x in the complex domain.
+ *
+ * <p>See: <a href="https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Extension_to_complex_plane">Wikipedia: Inverse trigonometric functions (Extension to complex plane)</a></p>
+ *
+ * @param x the {@link BigComplex} to calculate the arc tangens for
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated arc tangens {@link BigComplex} with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex atan(BigComplex x, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ return log(I.subtract(x, mc).divide(I.add(x, mc), mc), mc).divide(I, mc).divide(TWO, mc).round(mathContext);
+ }
+
+ /**
+ * Calculates the arc cotangens (inverted cotangens) of {@link BigComplex} x in the complex domain.
+ *
+ * <p>See: <a href="https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Extension_to_complex_plane">Wikipedia: Inverse trigonometric functions (Extension to complex plane)</a></p>
+ *
+ * @param x the {@link BigComplex} to calculate the arc cotangens for
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated arc cotangens {@link BigComplex} with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex acot(BigComplex x, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ return log(x.add(I, mc).divide(x.subtract(I, mc), mc), mc).divide(I, mc).divide(TWO, mc).round(mathContext);
+ }
+
+ /**
+ * Calculates the arc sine (inverted sine) of {@link BigComplex} x in the complex domain.
+ *
+ * <p>See: <a href="https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Extension_to_complex_plane">Wikipedia: Inverse trigonometric functions (Extension to complex plane)</a></p>
+ *
+ * @param x the {@link BigComplex} to calculate the arc sine for
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated arc sine {@link BigComplex} with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex asin(BigComplex x, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ return I.negate().multiply(log(I.multiply(x, mc).add(sqrt(BigComplex.ONE.subtract(x.multiply(x, mc), mc), mc), mc), mc), mc).round(mathContext);
+ }
+
+ /**
+ * Calculates the arc cosine (inverted cosine) of {@link BigComplex} x in the complex domain.
+ *
+ * <p>See: <a href="https://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Extension_to_complex_plane">Wikipedia: Inverse trigonometric functions (Extension to complex plane)</a></p>
+ *
+ * @param x the {@link BigComplex} to calculate the arc cosine for
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated arc cosine {@link BigComplex} with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex acos(BigComplex x, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ return I.negate().multiply(log(x.add(sqrt(x.multiply(x, mc).subtract(BigComplex.ONE, mc), mc), mc), mc), mc).round(mathContext);
+ }
+
+ /**
+ * Calculates the square root of {@link BigComplex} x in the complex domain (sqrt x).
+ *
+ * <p>See <a href="https://en.wikipedia.org/wiki/Square_root#Square_root_of_an_imaginary_number">Wikipedia: Square root (Square root of an imaginary number)</a></p>
+ *
+ * @param x the {@link BigComplex} to calculate the square root for
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated square root {@link BigComplex} with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex sqrt(BigComplex x, MathContext mathContext) {
+ // https://math.stackexchange.com/questions/44406/how-do-i-get-the-square-root-of-a-complex-number
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ BigDecimal magnitude = x.abs(mc);
+
+ BigComplex a = x.add(magnitude, mc);
+ return a.divide(a.abs(mc), mc).multiply(BigDecimalMath.sqrt(magnitude, mc), mc).round(mathContext);
+ }
+
+ /**
+ * Calculates the natural logarithm of {@link BigComplex} x in the complex domain.
+ *
+ * <p>See: <a href="https://en.wikipedia.org/wiki/Complex_logarithm">Wikipedia: Complex logarithm</a></p>
+ *
+ * @param x the {@link BigComplex} to calculate the natural logarithm for
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated natural logarithm {@link BigComplex} with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex log(BigComplex x, MathContext mathContext) {
+ // https://en.wikipedia.org/wiki/Complex_logarithm
+ MathContext mc1 = new MathContext(mathContext.getPrecision() + 20, mathContext.getRoundingMode());
+ MathContext mc2 = new MathContext(mathContext.getPrecision() + 5, mathContext.getRoundingMode());
+
+ return BigComplex.valueOf(
+ BigDecimalMath.log(x.abs(mc1), mc1).round(mathContext),
+ x.angle(mc2)).round(mathContext);
+ }
+
+ /**
+ * Calculates {@link BigComplex} x to the power of <code>long</code> y (x<sup>y</sup>).
+ *
+ * <p>The implementation tries to minimize the number of multiplications of {@link BigComplex x} (using squares whenever possible).</p>
+ *
+ * <p>See: <a href="https://en.wikipedia.org/wiki/Exponentiation#Efficient_computation_with_integer_exponents">Wikipedia: Exponentiation - efficient computation</a></p>
+ *
+ * @param x the {@link BigComplex} value to take to the power
+ * @param y the <code>long</code> value to serve as exponent
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated x to the power of y with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex pow(BigComplex x, long y, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 10, mathContext.getRoundingMode());
+
+ if (y < 0) {
+ return BigComplex.ONE.divide(pow(x, -y, mc), mc).round(mathContext);
+ }
+
+ BigComplex result = BigComplex.ONE;
+ while (y > 0) {
+ if ((y & 1) == 1) {
+ // odd exponent -> multiply result with x
+ result = result.multiply(x, mc);
+ y -= 1;
+ }
+
+ if (y > 0) {
+ // even exponent -> square x
+ x = x.multiply(x, mc);
+ }
+
+ y >>= 1;
+ }
+
+ return result.round(mathContext);
+ }
+
+ /**
+ * Calculates {@link BigComplex} x to the power of {@link BigDecimal} y (x<sup>y</sup>).
+ *
+ * @param x the {@link BigComplex} value to take to the power
+ * @param y the {@link BigDecimal} value to serve as exponent
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated x to the power of y with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex pow(BigComplex x, BigDecimal y, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ BigDecimal angleTimesN = x.angle(mc).multiply(y, mc);
+ return BigComplex.valueOf(
+ BigDecimalMath.cos(angleTimesN, mc),
+ BigDecimalMath.sin(angleTimesN, mc)).multiply(BigDecimalMath.pow(x.abs(mc), y, mc), mc).round(mathContext);
+ }
+
+ /**
+ * Calculates {@link BigComplex} x to the power of {@link BigComplex} y (x<sup>y</sup>).
+ *
+ * @param x the {@link BigComplex} value to take to the power
+ * @param y the {@link BigComplex} value to serve as exponent
+ * @param mathContext the {@link MathContext} used for the result
+ * @return the calculated x to the power of y with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex pow(BigComplex x, BigComplex y, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ return exp(y.multiply(log(x, mc), mc), mc).round(mathContext);
+ }
+
+ /**
+ * Calculates the {@link BigDecimal} n'th root of {@link BigComplex} x (<sup>n</sup>sqrt x).
+ *
+ * <p>See <a href="http://en.wikipedia.org/wiki/Square_root">Wikipedia: Square root</a></p>
+ * @param x the {@link BigComplex} value to calculate the n'th root
+ * @param n the {@link BigDecimal} defining the root
+ * @param mathContext the {@link MathContext} used for the result
+ *
+ * @return the calculated n'th root of x with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex root(BigComplex x, BigDecimal n, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ return pow(x, BigDecimal.ONE.divide(n, mc), mc).round(mathContext);
+ }
+
+ /**
+ * Calculates the {@link BigComplex} n'th root of {@link BigComplex} x (<sup>n</sup>sqrt x).
+ *
+ * <p>See <a href="http://en.wikipedia.org/wiki/Square_root">Wikipedia: Square root</a></p>
+ * @param x the {@link BigComplex} value to calculate the n'th root
+ * @param n the {@link BigComplex} defining the root
+ * @param mathContext the {@link MathContext} used for the result
+ *
+ * @return the calculated n'th root of x with the precision specified in the <code>mathContext</code>
+ */
+ public static BigComplex root(BigComplex x, BigComplex n, MathContext mathContext) {
+ MathContext mc = new MathContext(mathContext.getPrecision() + 4, mathContext.getRoundingMode());
+
+ return pow(x, BigComplex.ONE.divide(n, mc), mc).round(mathContext);
+ }
+
+ // TODO add root() for the k'th root - https://math.stackexchange.com/questions/322481/principal-nth-root-of-a-complex-number
+}