aboutsummaryrefslogtreecommitdiff
path: root/src/main/java/gtPlusPlus/api/objects
diff options
context:
space:
mode:
authormiozune <miozune@gmail.com>2023-10-17 13:48:30 +0900
committermiozune <miozune@gmail.com>2023-10-17 17:39:55 +0900
commitec1f11c7207e0891383cf7b9183b971e194ff332 (patch)
tree0fe0407ffb1c7e3f85bbede62c4196db63d51204 /src/main/java/gtPlusPlus/api/objects
parent325a5f154e8d8d7dac6c03deb632a0041b3d69ca (diff)
downloadGT5-Unofficial-ec1f11c7207e0891383cf7b9183b971e194ff332.tar.gz
GT5-Unofficial-ec1f11c7207e0891383cf7b9183b971e194ff332.tar.bz2
GT5-Unofficial-ec1f11c7207e0891383cf7b9183b971e194ff332.zip
Switch to GT XSTR
Diffstat (limited to 'src/main/java/gtPlusPlus/api/objects')
-rw-r--r--src/main/java/gtPlusPlus/api/objects/data/WeightedCollection.java2
-rw-r--r--src/main/java/gtPlusPlus/api/objects/random/XSTR.java253
2 files changed, 1 insertions, 254 deletions
diff --git a/src/main/java/gtPlusPlus/api/objects/data/WeightedCollection.java b/src/main/java/gtPlusPlus/api/objects/data/WeightedCollection.java
index 46cb8b35d9..9d9201066b 100644
--- a/src/main/java/gtPlusPlus/api/objects/data/WeightedCollection.java
+++ b/src/main/java/gtPlusPlus/api/objects/data/WeightedCollection.java
@@ -7,7 +7,7 @@ import java.util.Random;
import java.util.Set;
import java.util.TreeMap;
-import gtPlusPlus.api.objects.random.XSTR;
+import gregtech.api.objects.XSTR;
public class WeightedCollection<E> implements Map<Integer, E> {
diff --git a/src/main/java/gtPlusPlus/api/objects/random/XSTR.java b/src/main/java/gtPlusPlus/api/objects/random/XSTR.java
deleted file mode 100644
index 087f9535ce..0000000000
--- a/src/main/java/gtPlusPlus/api/objects/random/XSTR.java
+++ /dev/null
@@ -1,253 +0,0 @@
-package gtPlusPlus.api.objects.random;
-
-/**
- * A subclass of java.util.random that implements the Xorshift random number generator
- *
- * - it is 30% faster than the generator from Java's library - it produces random sequences of higher quality than
- * java.util.Random - this class also provides a clone() function
- *
- * Usage: XSRandom rand = new XSRandom(); //Instantiation x = rand.nextInt(); //pull a random number
- *
- * To use the class in legacy code, you may also instantiate an XSRandom object and assign it to a java.util.Random
- * object: java.util.Random rand = new XSRandom();
- *
- * for an explanation of the algorithm, see http://demesos.blogspot.com/2011/09/pseudo-random-number-generators.html
- *
- * @author Wilfried Elmenreich University of Klagenfurt/Lakeside Labs http://www.elmenreich.tk
- *
- * This code is released under the GNU Lesser General Public License Version 3
- * http://www.gnu.org/licenses/lgpl-3.0.txt
- */
-import java.util.Random;
-import java.util.concurrent.atomic.AtomicLong;
-
-/**
- * XSTR - Xorshift ThermiteRandom Modified by Bogdan-G 03.06.2016 version 0.0.4
- */
-public class XSTR extends Random implements Cloneable {
-
- private static final long serialVersionUID = 6208727693524452904L;
- private long seed;
- private long last;
- private static final long GAMMA = 0x9e3779b97f4a7c15L;
- private static final int PROBE_INCREMENT = 0x9e3779b9;
- private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
- private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53)
- private static final float FLOAT_UNIT = 0x1.0p-24f; // 1.0f / (1 << 24)
-
- /*
- * MODIFIED BY: Robotia Modification: Implemented Random class seed generator
- */
- /**
- * Creates a new pseudo random number generator. The seed is initialized to the current time, as if by
- * <code>setSeed(System.currentTimeMillis());</code>.
- */
- public XSTR() {
- this(seedUniquifier() ^ System.nanoTime());
- }
-
- private static final AtomicLong seedUniquifier = new AtomicLong(8682522807148012L);
-
- private static long seedUniquifier() {
- // L'Ecuyer, "Tables of Linear Congruential Generators of
- // Different Sizes and Good Lattice Structure", 1999
- for (;;) {
- final long current = seedUniquifier.get();
- final long next = current * 181783497276652981L;
- if (seedUniquifier.compareAndSet(current, next)) {
- return next;
- }
- }
- }
-
- /**
- * Creates a new pseudo random number generator, starting with the specified seed, using
- * <code>setSeed(seed);</code>.
- *
- * @param seed the initial seed
- */
- public XSTR(final long seed) {
- this.seed = seed;
- }
-
- @Override
- public boolean nextBoolean() {
- return this.next(1) != 0;
- }
-
- @Override
- public double nextDouble() {
- return (((long) (this.next(26)) << 27) + this.next(27)) * DOUBLE_UNIT;
- }
-
- /**
- * Returns the current state of the seed, can be used to clone the object
- *
- * @return the current seed
- */
- public synchronized long getSeed() {
- return this.seed;
- }
-
- /**
- * Sets the seed for this pseudo random number generator. As described above, two instances of the same random
- * class, starting with the same seed, produce the same results, if the same methods are called.
- *
- * @param seed the new seed
- */
- @Override
- public synchronized void setSeed(final long seed) {
- this.seed = seed;
- }
-
- /**
- * @return Returns an XSRandom object with the same state as the original
- */
- @Override
- public XSTR clone() {
- try {
- super.clone();
- } catch (CloneNotSupportedException e) {
- // TODO Auto-generated catch block
- e.printStackTrace();
- }
- return new XSTR(this.getSeed());
- }
-
- /**
- * Implementation of George Marsaglia's elegant Xorshift random generator 30% faster and better quality than the
- * built-in java.util.random see also see http://www.javamex.com/tutorials/random_numbers/xorshift.shtml
- *
- * @param nbits
- * @return
- */
- @Override
- public int next(final int nbits) {
- long x = this.seed;
- x ^= (x << 21);
- x ^= (x >>> 35);
- x ^= (x << 4);
- this.seed = x;
- x &= ((1L << nbits) - 1);
- return (int) x;
- }
-
- boolean haveNextNextGaussian = false;
- double nextNextGaussian = 0;
-
- @Override
- public synchronized double nextGaussian() {
- // See Knuth, ACP, Section 3.4.1 Algorithm C.
- if (this.haveNextNextGaussian) {
- this.haveNextNextGaussian = false;
- return this.nextNextGaussian;
- }
- double v1, v2, s;
- do {
- v1 = (2 * this.nextDouble()) - 1; // between -1 and 1
- v2 = (2 * this.nextDouble()) - 1; // between -1 and 1
- s = (v1 * v1) + (v2 * v2);
- } while ((s >= 1) || (s == 0));
- final double multiplier = StrictMath.sqrt((-2 * StrictMath.log(s)) / s);
- this.nextNextGaussian = v2 * multiplier;
- this.haveNextNextGaussian = true;
- return v1 * multiplier;
- }
-
- /**
- * Returns a pseudorandom, uniformly distributed {@code int} value between 0 (inclusive) and the specified value
- * (exclusive), drawn from this random number generator's sequence. The general contract of {@code nextInt} is that
- * one {@code int} value in the specified range is pseudorandomly generated and returned. All {@code bound} possible
- * {@code int} values are produced with (approximately) equal probability. The method {@code nextInt(int bound)} is
- * implemented by class {@code Random} as if by:
- *
- * <pre>
- * {@code
- * public int nextInt(int bound) {
- * if (bound <= 0)
- * throw new IllegalArgumentException("bound must be positive");
- *
- * if ((bound & -bound) == bound) // i.e., bound is a power of 2
- * return (int)((bound * (long)next(31)) >> 31);
- *
- * int bits, val;
- * do {
- * bits = next(31);
- * val = bits % bound;
- * } while (bits - val + (bound-1) < 0);
- * return val;
- * }}
- * </pre>
- *
- * <p>
- * The hedge "approx imately" is used in the foregoing description only because the next method is only
- * approximately an unbiased source of independently chosen bits. If it were a perfect source of randomly chosen
- * bits, then the algorithm shown would choose {@code int} values from the stated range with perfect uniformity.
- * <p>
- * The algorithm is slightly tricky. It rejects values that would result in an uneven distribution (due to the fact
- * that 2^31 is not divisible by n). The probability of a value being rejected depends on n. The worst case is
- * n=2^30+1, for which the probability of a reject is 1/2, and the expected number of iterations before the loop
- * terminates is 2.
- * <p>
- * The algorithm treats the case where n is a power of two specially: it returns the correct number of high-order
- * bits from the underlying pseudo-random number generator. In the absence of special treatment, the correct number
- * of <i>low-order</i> bits would be returned. Linear congruential pseudo-random number generators such as the one
- * implemented by this class are known to have short periods in the sequence of values of their low-order bits.
- * Thus, this special case greatly increases the length of the sequence of values returned by successive calls to
- * this method if n is a small power of two.
- *
- * @param bound the upper bound (exclusive). Must be positive.
- * @return the next pseudorandom, uniformly distributed {@code int} value between zero (inclusive) and {@code bound}
- * (exclusive) from this random number generator's sequence
- * @throws IllegalArgumentException if bound is not positive
- * @since 1.2
- */
- @Override
- public int nextInt(final int bound) {
- final int newBound;
- if (bound <= 0) {
- newBound = 1;
- // throw new RuntimeException("BadBound");
- } else {
- newBound = bound;
- }
-
- /*
- * int r = next(31); int m = bound - 1; if ((bound & m) == 0) // i.e., bound is a power of 2 { r = (int) ((bound
- * * (long) r) >> 31); } else { for (int u = r; u - (r = u % bound) + m < 0; u = next(31)) ; } return r;
- */
- // speedup, new nextInt ~+40%
- this.last = this.seed ^ (this.seed << 21);
- this.last ^= (this.last >>> 35);
- this.last ^= (this.last << 4);
- this.seed = this.last;
- final int out = (int) this.last % newBound;
- return (out < 0) ? -out : out;
- }
-
- @Override
- public int nextInt() {
- return this.next(32);
- }
-
- @Override
- public float nextFloat() {
- return this.next(24) * FLOAT_UNIT;
- }
-
- @Override
- public long nextLong() {
- // it's okay that the bottom word remains signed.
- return ((long) (this.next(32)) << 32) + this.next(32);
- }
-
- @Override
- public void nextBytes(final byte[] bytes_arr) {
- for (int iba = 0, lenba = bytes_arr.length; iba < lenba;) {
- for (int rndba = this.nextInt(), nba = Math.min(lenba - iba, Integer.SIZE / Byte.SIZE); nba--
- > 0; rndba >>= Byte.SIZE) {
- bytes_arr[iba++] = (byte) rndba;
- }
- }
- }
-}