diff options
author | miozune <miozune@gmail.com> | 2023-10-17 13:48:30 +0900 |
---|---|---|
committer | miozune <miozune@gmail.com> | 2023-10-17 17:39:55 +0900 |
commit | ec1f11c7207e0891383cf7b9183b971e194ff332 (patch) | |
tree | 0fe0407ffb1c7e3f85bbede62c4196db63d51204 /src/main/java/gtPlusPlus/api/objects | |
parent | 325a5f154e8d8d7dac6c03deb632a0041b3d69ca (diff) | |
download | GT5-Unofficial-ec1f11c7207e0891383cf7b9183b971e194ff332.tar.gz GT5-Unofficial-ec1f11c7207e0891383cf7b9183b971e194ff332.tar.bz2 GT5-Unofficial-ec1f11c7207e0891383cf7b9183b971e194ff332.zip |
Switch to GT XSTR
Diffstat (limited to 'src/main/java/gtPlusPlus/api/objects')
-rw-r--r-- | src/main/java/gtPlusPlus/api/objects/data/WeightedCollection.java | 2 | ||||
-rw-r--r-- | src/main/java/gtPlusPlus/api/objects/random/XSTR.java | 253 |
2 files changed, 1 insertions, 254 deletions
diff --git a/src/main/java/gtPlusPlus/api/objects/data/WeightedCollection.java b/src/main/java/gtPlusPlus/api/objects/data/WeightedCollection.java index 46cb8b35d9..9d9201066b 100644 --- a/src/main/java/gtPlusPlus/api/objects/data/WeightedCollection.java +++ b/src/main/java/gtPlusPlus/api/objects/data/WeightedCollection.java @@ -7,7 +7,7 @@ import java.util.Random; import java.util.Set; import java.util.TreeMap; -import gtPlusPlus.api.objects.random.XSTR; +import gregtech.api.objects.XSTR; public class WeightedCollection<E> implements Map<Integer, E> { diff --git a/src/main/java/gtPlusPlus/api/objects/random/XSTR.java b/src/main/java/gtPlusPlus/api/objects/random/XSTR.java deleted file mode 100644 index 087f9535ce..0000000000 --- a/src/main/java/gtPlusPlus/api/objects/random/XSTR.java +++ /dev/null @@ -1,253 +0,0 @@ -package gtPlusPlus.api.objects.random; - -/** - * A subclass of java.util.random that implements the Xorshift random number generator - * - * - it is 30% faster than the generator from Java's library - it produces random sequences of higher quality than - * java.util.Random - this class also provides a clone() function - * - * Usage: XSRandom rand = new XSRandom(); //Instantiation x = rand.nextInt(); //pull a random number - * - * To use the class in legacy code, you may also instantiate an XSRandom object and assign it to a java.util.Random - * object: java.util.Random rand = new XSRandom(); - * - * for an explanation of the algorithm, see http://demesos.blogspot.com/2011/09/pseudo-random-number-generators.html - * - * @author Wilfried Elmenreich University of Klagenfurt/Lakeside Labs http://www.elmenreich.tk - * - * This code is released under the GNU Lesser General Public License Version 3 - * http://www.gnu.org/licenses/lgpl-3.0.txt - */ -import java.util.Random; -import java.util.concurrent.atomic.AtomicLong; - -/** - * XSTR - Xorshift ThermiteRandom Modified by Bogdan-G 03.06.2016 version 0.0.4 - */ -public class XSTR extends Random implements Cloneable { - - private static final long serialVersionUID = 6208727693524452904L; - private long seed; - private long last; - private static final long GAMMA = 0x9e3779b97f4a7c15L; - private static final int PROBE_INCREMENT = 0x9e3779b9; - private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL; - private static final double DOUBLE_UNIT = 0x1.0p-53; // 1.0 / (1L << 53) - private static final float FLOAT_UNIT = 0x1.0p-24f; // 1.0f / (1 << 24) - - /* - * MODIFIED BY: Robotia Modification: Implemented Random class seed generator - */ - /** - * Creates a new pseudo random number generator. The seed is initialized to the current time, as if by - * <code>setSeed(System.currentTimeMillis());</code>. - */ - public XSTR() { - this(seedUniquifier() ^ System.nanoTime()); - } - - private static final AtomicLong seedUniquifier = new AtomicLong(8682522807148012L); - - private static long seedUniquifier() { - // L'Ecuyer, "Tables of Linear Congruential Generators of - // Different Sizes and Good Lattice Structure", 1999 - for (;;) { - final long current = seedUniquifier.get(); - final long next = current * 181783497276652981L; - if (seedUniquifier.compareAndSet(current, next)) { - return next; - } - } - } - - /** - * Creates a new pseudo random number generator, starting with the specified seed, using - * <code>setSeed(seed);</code>. - * - * @param seed the initial seed - */ - public XSTR(final long seed) { - this.seed = seed; - } - - @Override - public boolean nextBoolean() { - return this.next(1) != 0; - } - - @Override - public double nextDouble() { - return (((long) (this.next(26)) << 27) + this.next(27)) * DOUBLE_UNIT; - } - - /** - * Returns the current state of the seed, can be used to clone the object - * - * @return the current seed - */ - public synchronized long getSeed() { - return this.seed; - } - - /** - * Sets the seed for this pseudo random number generator. As described above, two instances of the same random - * class, starting with the same seed, produce the same results, if the same methods are called. - * - * @param seed the new seed - */ - @Override - public synchronized void setSeed(final long seed) { - this.seed = seed; - } - - /** - * @return Returns an XSRandom object with the same state as the original - */ - @Override - public XSTR clone() { - try { - super.clone(); - } catch (CloneNotSupportedException e) { - // TODO Auto-generated catch block - e.printStackTrace(); - } - return new XSTR(this.getSeed()); - } - - /** - * Implementation of George Marsaglia's elegant Xorshift random generator 30% faster and better quality than the - * built-in java.util.random see also see http://www.javamex.com/tutorials/random_numbers/xorshift.shtml - * - * @param nbits - * @return - */ - @Override - public int next(final int nbits) { - long x = this.seed; - x ^= (x << 21); - x ^= (x >>> 35); - x ^= (x << 4); - this.seed = x; - x &= ((1L << nbits) - 1); - return (int) x; - } - - boolean haveNextNextGaussian = false; - double nextNextGaussian = 0; - - @Override - public synchronized double nextGaussian() { - // See Knuth, ACP, Section 3.4.1 Algorithm C. - if (this.haveNextNextGaussian) { - this.haveNextNextGaussian = false; - return this.nextNextGaussian; - } - double v1, v2, s; - do { - v1 = (2 * this.nextDouble()) - 1; // between -1 and 1 - v2 = (2 * this.nextDouble()) - 1; // between -1 and 1 - s = (v1 * v1) + (v2 * v2); - } while ((s >= 1) || (s == 0)); - final double multiplier = StrictMath.sqrt((-2 * StrictMath.log(s)) / s); - this.nextNextGaussian = v2 * multiplier; - this.haveNextNextGaussian = true; - return v1 * multiplier; - } - - /** - * Returns a pseudorandom, uniformly distributed {@code int} value between 0 (inclusive) and the specified value - * (exclusive), drawn from this random number generator's sequence. The general contract of {@code nextInt} is that - * one {@code int} value in the specified range is pseudorandomly generated and returned. All {@code bound} possible - * {@code int} values are produced with (approximately) equal probability. The method {@code nextInt(int bound)} is - * implemented by class {@code Random} as if by: - * - * <pre> - * {@code - * public int nextInt(int bound) { - * if (bound <= 0) - * throw new IllegalArgumentException("bound must be positive"); - * - * if ((bound & -bound) == bound) // i.e., bound is a power of 2 - * return (int)((bound * (long)next(31)) >> 31); - * - * int bits, val; - * do { - * bits = next(31); - * val = bits % bound; - * } while (bits - val + (bound-1) < 0); - * return val; - * }} - * </pre> - * - * <p> - * The hedge "approx imately" is used in the foregoing description only because the next method is only - * approximately an unbiased source of independently chosen bits. If it were a perfect source of randomly chosen - * bits, then the algorithm shown would choose {@code int} values from the stated range with perfect uniformity. - * <p> - * The algorithm is slightly tricky. It rejects values that would result in an uneven distribution (due to the fact - * that 2^31 is not divisible by n). The probability of a value being rejected depends on n. The worst case is - * n=2^30+1, for which the probability of a reject is 1/2, and the expected number of iterations before the loop - * terminates is 2. - * <p> - * The algorithm treats the case where n is a power of two specially: it returns the correct number of high-order - * bits from the underlying pseudo-random number generator. In the absence of special treatment, the correct number - * of <i>low-order</i> bits would be returned. Linear congruential pseudo-random number generators such as the one - * implemented by this class are known to have short periods in the sequence of values of their low-order bits. - * Thus, this special case greatly increases the length of the sequence of values returned by successive calls to - * this method if n is a small power of two. - * - * @param bound the upper bound (exclusive). Must be positive. - * @return the next pseudorandom, uniformly distributed {@code int} value between zero (inclusive) and {@code bound} - * (exclusive) from this random number generator's sequence - * @throws IllegalArgumentException if bound is not positive - * @since 1.2 - */ - @Override - public int nextInt(final int bound) { - final int newBound; - if (bound <= 0) { - newBound = 1; - // throw new RuntimeException("BadBound"); - } else { - newBound = bound; - } - - /* - * int r = next(31); int m = bound - 1; if ((bound & m) == 0) // i.e., bound is a power of 2 { r = (int) ((bound - * * (long) r) >> 31); } else { for (int u = r; u - (r = u % bound) + m < 0; u = next(31)) ; } return r; - */ - // speedup, new nextInt ~+40% - this.last = this.seed ^ (this.seed << 21); - this.last ^= (this.last >>> 35); - this.last ^= (this.last << 4); - this.seed = this.last; - final int out = (int) this.last % newBound; - return (out < 0) ? -out : out; - } - - @Override - public int nextInt() { - return this.next(32); - } - - @Override - public float nextFloat() { - return this.next(24) * FLOAT_UNIT; - } - - @Override - public long nextLong() { - // it's okay that the bottom word remains signed. - return ((long) (this.next(32)) << 32) + this.next(32); - } - - @Override - public void nextBytes(final byte[] bytes_arr) { - for (int iba = 0, lenba = bytes_arr.length; iba < lenba;) { - for (int rndba = this.nextInt(), nba = Math.min(lenba - iba, Integer.SIZE / Byte.SIZE); nba-- - > 0; rndba >>= Byte.SIZE) { - bytes_arr[iba++] = (byte) rndba; - } - } - } -} |