aboutsummaryrefslogtreecommitdiff
path: root/src/main/java/gregtech/api/interfaces/tileentity/IEnergyConnected.java
blob: 91a9759e47266ec42f49495a490749e8d04b55fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
package gregtech.api.interfaces.tileentity;

import java.util.Objects;

import javax.annotation.Nonnull;

import net.minecraft.tileentity.TileEntity;
import net.minecraftforge.common.util.ForgeDirection;

import cofh.api.energy.IEnergyReceiver;
import gregtech.api.GregTech_API;
import gregtech.api.logic.PowerLogic;
import gregtech.api.logic.interfaces.PowerLogicHost;
import gregtech.api.util.GT_Utility;
import ic2.api.energy.tile.IEnergySink;

/**
 * Interface for getting Connected to the GregTech Energy Network.
 * <p/>
 * This is all you need to connect to the GT Network. IColoredTileEntity is needed for not connecting differently
 * coloured Blocks to each other. IHasWorldObjectAndCoords is needed for the InWorld related Stuff. @BaseTileEntity does
 * implement most of that Interface.
 */
public interface IEnergyConnected extends IColoredTileEntity {

    /**
     * Inject Energy Call for Electricity. Gets called by EnergyEmitters to inject Energy into your Block
     * <p/>
     * Note: you have to check for @inputEnergyFrom because the Network won't check for that by itself.
     *
     * @param side 0 - 5 = Vanilla Directions of YOUR Block the Energy gets inserted to. 6 = No specific Side (don't do
     *             Side checks for this Side)
     * @return amount of used Amperes. 0 if not accepted anything.
     */
    long injectEnergyUnits(ForgeDirection side, long aVoltage, long aAmperage);

    /**
     * Sided Energy Input
     */
    boolean inputEnergyFrom(ForgeDirection side);

    default boolean inputEnergyFrom(ForgeDirection side, boolean waitForActive) {
        return inputEnergyFrom(side);
    }

    /**
     * Sided Energy Output
     */
    boolean outputsEnergyTo(ForgeDirection side);

    default boolean outputsEnergyTo(ForgeDirection side, boolean waitForActive) {
        return outputsEnergyTo(side);
    }

    /**
     * Utility for the Network
     */
    final class Util {

        // TODO: Deduplicate code by rewokring the Enet system using the GTCEu one as inspiration - BlueWeabo
        /**
         * Emits Energy to the E-net. Also compatible with adjacent IC2 TileEntities.
         *
         * @return the used Amperage.
         */
        public static long emitEnergyToNetwork(long voltage, long amperage, IEnergyConnected emitter) {
            long usedAmperes = 0;
            if (!(emitter instanceof IHasWorldObjectAndCoords emitterTile)) {
                return 0;
            }

            for (final ForgeDirection side : ForgeDirection.VALID_DIRECTIONS) {
                if (usedAmperes > amperage) break;
                if (!emitter.outputsEnergyTo(side)) {
                    continue;
                }

                final ForgeDirection oppositeSide = Objects.requireNonNull(side.getOpposite());
                final TileEntity tTileEntity = emitterTile.getTileEntityAtSide(side);
                if (tTileEntity instanceof PowerLogicHost host) {

                    final PowerLogic logic = host.getPowerLogic(oppositeSide);
                    if (logic == null || logic.isEnergyReceiver()) {
                        continue;
                    }

                    usedAmperes += logic.injectEnergy(voltage, amperage - usedAmperes);
                } else if (tTileEntity instanceof IEnergyConnected energyConnected) {
                    if (emitter.getColorization() >= 0) {
                        final byte tColor = energyConnected.getColorization();
                        if (tColor >= 0 && tColor != emitter.getColorization()) continue;
                    }
                    usedAmperes += energyConnected.injectEnergyUnits(oppositeSide, voltage, amperage - usedAmperes);

                } else if (tTileEntity instanceof IEnergySink sink) {
                    if (sink.acceptsEnergyFrom((TileEntity) emitter, oppositeSide)) {
                        while (amperage > usedAmperes && sink.getDemandedEnergy() > 0
                            && sink.injectEnergy(oppositeSide, voltage, voltage) < voltage) usedAmperes++;
                    }
                } else if (GregTech_API.mOutputRF && tTileEntity instanceof IEnergyReceiver receiver) {
                    final int rfOut = GT_Utility.safeInt(voltage * GregTech_API.mEUtoRF / 100);
                    if (receiver.receiveEnergy(oppositeSide, rfOut, true) == rfOut) {
                        receiver.receiveEnergy(oppositeSide, rfOut, false);
                        usedAmperes++;
                    }
                }
            }
            return usedAmperes;
        }

        /**
         * Same as {@link #emitEnergyToNetwork(long, long, IEnergyConnected)}, but instead we remove the energy directly from the logic itself.
         * @param emitter The host, which is trying to emit energy in the network
         * @param outputSide side from where energy is being outputted to. If its {@link ForgeDirection#UNKNOWN} then it doesn't emit energy to the network
         */
        public static void emitEnergyToNetwork(@Nonnull final PowerLogicHost emitter, @Nonnull final ForgeDirection outputSide) {
            if (outputSide == ForgeDirection.UNKNOWN) return;
            final PowerLogic emitterLogic = emitter.getPowerLogic();
            long usedAmperes = 0;
            long voltage = emitterLogic.getVoltage();
            long amperage = emitterLogic.getMaxAmperage();
            if (!(emitter instanceof final IHasWorldObjectAndCoords emitterTile)) {
                return;
            }
            // We need to make sure we can actually output energy on this side. This is more of a safety check.
            if (emitter.getPowerLogic(outputSide) == null) {
                return;
            }

            final ForgeDirection oppositeSide = Objects.requireNonNull(outputSide.getOpposite());
            final TileEntity tileEntity = emitterTile.getTileEntityAtSide(outputSide);
            if (tileEntity instanceof PowerLogicHost host) {

                final PowerLogic logic = host.getPowerLogic(oppositeSide);
                if (logic == null || logic.isEnergyReceiver()) {
                    return;
                }

                usedAmperes += logic.injectEnergy(voltage, amperage);
                emitterLogic.removeEnergyUnsafe(usedAmperes * voltage);
                return;
            }

            if (tileEntity instanceof IEnergyConnected energyConnected) {
                if (emitter instanceof IColoredTileEntity coloredEmitter && coloredEmitter.getColorization() >= 0) {
                    final byte tColor = energyConnected.getColorization();
                    if (tColor >= 0 && tColor != coloredEmitter.getColorization()) {
                        return;
                    }
                }
                usedAmperes += energyConnected.injectEnergyUnits(oppositeSide, voltage, amperage - usedAmperes);
                emitterLogic.removeEnergyUnsafe(usedAmperes * voltage);
                return;
            }
    
            if (tileEntity instanceof IEnergySink sink) {
                if (sink.acceptsEnergyFrom((TileEntity) emitter, oppositeSide)) {
                    while (amperage > usedAmperes && sink.getDemandedEnergy() > 0
                        && sink.injectEnergy(oppositeSide, voltage, voltage) < voltage) {
                            usedAmperes++;
                        }
                    emitterLogic.removeEnergyUnsafe(usedAmperes * voltage);
                    return;
                }
            }

            if (GregTech_API.mOutputRF && tileEntity instanceof IEnergyReceiver receiver) {
                final int rfOut = GT_Utility.safeInt(voltage * GregTech_API.mEUtoRF / 100);
                if (receiver.receiveEnergy(oppositeSide, rfOut, true) == rfOut) {
                    receiver.receiveEnergy(oppositeSide, rfOut, false);
                    usedAmperes++;
                    emitterLogic.removeEnergyUnsafe(usedAmperes * voltage);
                    return;
                }
            }
        }
    }
}