1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
use std::cell::RefCell;
use std::rc::Rc;
use std::time::Duration;
use crate::utils::get_monotonic_time;
/// Shareable lazy clock that can change rate.
///
/// The clock will fetch the time once and then retain it until explicitly cleared with
/// [`Clock::clear`].
#[derive(Debug, Default, Clone)]
pub struct Clock {
inner: Rc<RefCell<AdjustableClock>>,
}
#[derive(Debug, Default)]
struct LazyClock {
time: Option<Duration>,
}
/// Clock that can adjust its rate.
#[derive(Debug)]
struct AdjustableClock {
inner: LazyClock,
current_time: Duration,
last_seen_time: Duration,
rate: f64,
complete_instantly: bool,
}
impl Clock {
/// Creates a new clock with the given time.
pub fn with_time(time: Duration) -> Self {
let clock = AdjustableClock::new(LazyClock::with_time(time));
Self {
inner: Rc::new(RefCell::new(clock)),
}
}
/// Returns the current time.
pub fn now(&self) -> Duration {
self.inner.borrow_mut().now()
}
/// Returns the underlying time not adjusted for rate change.
pub fn now_unadjusted(&self) -> Duration {
self.inner.borrow_mut().inner.now()
}
/// Sets the unadjusted clock time.
pub fn set_unadjusted(&mut self, time: Duration) {
self.inner.borrow_mut().inner.set(time);
}
/// Clears the stored time so it's re-fetched again next.
pub fn clear(&mut self) {
self.inner.borrow_mut().inner.clear();
}
/// Gets the clock rate.
pub fn rate(&self) -> f64 {
self.inner.borrow().rate()
}
/// Sets the clock rate.
pub fn set_rate(&mut self, rate: f64) {
self.inner.borrow_mut().set_rate(rate);
}
/// Returns whether animations should complete instantly.
pub fn should_complete_instantly(&self) -> bool {
self.inner.borrow().should_complete_instantly()
}
/// Sets whether animations should complete instantly.
pub fn set_complete_instantly(&mut self, value: bool) {
self.inner.borrow_mut().set_complete_instantly(value);
}
}
impl PartialEq for Clock {
fn eq(&self, other: &Self) -> bool {
Rc::ptr_eq(&self.inner, &other.inner)
}
}
impl Eq for Clock {}
impl LazyClock {
pub fn with_time(time: Duration) -> Self {
Self { time: Some(time) }
}
pub fn clear(&mut self) {
self.time = None;
}
pub fn set(&mut self, time: Duration) {
self.time = Some(time);
}
pub fn now(&mut self) -> Duration {
*self.time.get_or_insert_with(get_monotonic_time)
}
}
impl AdjustableClock {
pub fn new(mut inner: LazyClock) -> Self {
let time = inner.now();
Self {
inner,
current_time: time,
last_seen_time: time,
rate: 1.,
complete_instantly: false,
}
}
pub fn rate(&self) -> f64 {
self.rate
}
pub fn set_rate(&mut self, rate: f64) {
self.rate = rate.clamp(0., 1000.);
}
pub fn should_complete_instantly(&self) -> bool {
self.complete_instantly
}
pub fn set_complete_instantly(&mut self, value: bool) {
self.complete_instantly = value;
}
pub fn now(&mut self) -> Duration {
let time = self.inner.now();
if self.last_seen_time == time {
return self.current_time;
}
if self.last_seen_time < time {
let delta = time - self.last_seen_time;
let delta = delta.mul_f64(self.rate);
self.current_time = self.current_time.saturating_add(delta);
} else {
let delta = self.last_seen_time - time;
let delta = delta.mul_f64(self.rate);
self.current_time = self.current_time.saturating_sub(delta);
}
self.last_seen_time = time;
self.current_time
}
}
impl Default for AdjustableClock {
fn default() -> Self {
Self::new(LazyClock::default())
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn frozen_clock() {
let mut clock = Clock::with_time(Duration::ZERO);
assert_eq!(clock.now(), Duration::ZERO);
clock.set_unadjusted(Duration::from_millis(100));
assert_eq!(clock.now(), Duration::from_millis(100));
clock.set_unadjusted(Duration::from_millis(200));
assert_eq!(clock.now(), Duration::from_millis(200));
}
#[test]
fn rate_change() {
let mut clock = Clock::with_time(Duration::ZERO);
clock.set_rate(0.5);
clock.set_unadjusted(Duration::from_millis(100));
assert_eq!(clock.now_unadjusted(), Duration::from_millis(100));
assert_eq!(clock.now(), Duration::from_millis(50));
clock.set_unadjusted(Duration::from_millis(200));
assert_eq!(clock.now_unadjusted(), Duration::from_millis(200));
assert_eq!(clock.now(), Duration::from_millis(100));
clock.set_unadjusted(Duration::from_millis(150));
assert_eq!(clock.now_unadjusted(), Duration::from_millis(150));
assert_eq!(clock.now(), Duration::from_millis(75));
clock.set_rate(2.0);
clock.set_unadjusted(Duration::from_millis(250));
assert_eq!(clock.now_unadjusted(), Duration::from_millis(250));
assert_eq!(clock.now(), Duration::from_millis(275));
}
}
|