diff options
Diffstat (limited to 'src/control/character_controller.rs')
| -rw-r--r-- | src/control/character_controller.rs | 729 |
1 files changed, 729 insertions, 0 deletions
diff --git a/src/control/character_controller.rs b/src/control/character_controller.rs new file mode 100644 index 0000000..049aef8 --- /dev/null +++ b/src/control/character_controller.rs @@ -0,0 +1,729 @@ +use crate::dynamics::RigidBodySet; +use crate::geometry::{ColliderHandle, ColliderSet, ContactManifold, Shape, TOI}; +use crate::math::{Isometry, Point, Real, UnitVector, Vector}; +use crate::pipeline::{QueryFilter, QueryFilterFlags, QueryPipeline}; +use crate::utils; +use na::{RealField, Vector2}; +use parry::bounding_volume::BoundingVolume; +use parry::math::Translation; +use parry::query::{DefaultQueryDispatcher, PersistentQueryDispatcher}; + +#[derive(Copy, Clone, Debug, PartialEq)] +/// A length measure used for various options of a character controller. +pub enum CharacterLength { + /// The length is specified relative to some of the character shape’s size. + /// + /// For example setting `CharacterAutostep::max_height` to `CharaceterLentgh::Relative(0.1)` + /// for a shape with an height equal to 20.0 will result in a maximum step heigth + /// of `0.1 * 20.0 = 2.0`. + Relative(Real), + /// The lengt his specified as an aboslute value, independent from the character shape’s size. + /// + /// For example setting `CharacterAutostep::max_height` to `CharaceterLentgh::Relative(0.1)` + /// for a shape with an height equal to 20.0 will result in a maximum step heigth + /// of `0.1` (the shape height is ignored in for this value). + Absolute(Real), +} + +impl CharacterLength { + pub fn map_absolute(self, f: impl FnOnce(Real) -> Real) -> Self { + if let Self::Absolute(value) = self { + Self::Absolute(f(value)) + } else { + self + } + } + + fn eval(self, value: Real) -> Real { + match self { + Self::Relative(x) => value * x, + Self::Absolute(x) => x, + } + } +} + +/// Configuration for the auto-stepping character controller feature. +#[derive(Copy, Clone, Debug, PartialEq)] +pub struct CharacterAutostep { + /// The maximum step height a character can automatically step over. + pub max_height: CharacterLength, + /// The minimum width of free space that must be available after stepping on a stair. + pub min_width: CharacterLength, + /// Can the character automatically step over dynamic bodies too? + pub include_dynamic_bodies: bool, +} + +impl Default for CharacterAutostep { + fn default() -> Self { + Self { + max_height: CharacterLength::Relative(0.25), + min_width: CharacterLength::Relative(0.5), + include_dynamic_bodies: true, + } + } +} + +/// A collision between the character and its environment during its movement. +pub struct CharacterCollision { + /// The collider hit by the character. + pub handle: ColliderHandle, + /// The position of the character when the collider was hit. + pub character_pos: Isometry<Real>, + /// The translation that was already applied to the character when the hit happens. + pub translation_applied: Vector<Real>, + /// The translations that was still waiting to be applied to the character when the hit happens. + pub translation_remaining: Vector<Real>, + /// Geometric information about the hit. + pub toi: TOI, +} + +/// A character controller for kinematic bodies. +#[derive(Copy, Clone, Debug)] +pub struct KinematicCharacterController { + /// The direction that goes "up". Used to determine where the floor is, and the floor’s angle. + pub up: UnitVector<Real>, + /// A small gap to preserve between the character and its surroundings. + /// + /// This value should not be too large to avoid visual artifacts, but shouldn’t be too small + /// (must not be zero) to improve numerical stability of the character controller. + pub offset: CharacterLength, + /// Should the character try to slide against the floor if it hits it? + pub slide: bool, + /// Should the character automatically step over small obstacles? + pub autostep: Option<CharacterAutostep>, + /// The maximum angle (radians) between the floor’s normal and the `up` vector that the + /// character is able to climb. + pub max_slope_climb_angle: Real, + /// The minimum angle (radians) between the floor’s normal and the `up` vector before the + /// character starts to slide down automatically. + pub min_slope_slide_angle: Real, + /// Should the character be automatically snapped to the ground if the distance between + /// the ground and its feed are smaller than the specified threshold? + pub snap_to_ground: Option<CharacterLength>, +} + +impl Default for KinematicCharacterController { + fn default() -> Self { + Self { + up: Vector::y_axis(), + offset: CharacterLength::Relative(0.01), + slide: true, + autostep: Some(CharacterAutostep::default()), + max_slope_climb_angle: Real::frac_pi_4(), + min_slope_slide_angle: Real::frac_pi_4(), + snap_to_ground: Some(CharacterLength::Relative(0.2)), + } + } +} + +/// The effective movement computed by the character controller. +pub struct EffectiveCharacterMovement { + /// The movement to apply. + pub translation: Vector<Real>, + /// Is the character touching the ground after applying `EffictiveKineamticMovement::translation`? + pub grounded: bool, +} + +impl KinematicCharacterController { + fn check_and_fix_penetrations(&self) { + /* + // 1/ Check if the body is grounded and if there are penetrations. + let mut grounded = false; + let mut penetrating = false; + + let mut contacts = vec![]; + + let aabb = shape + .compute_aabb(shape_pos) + .loosened(self.offset); + queries.colliders_with_aabb_intersecting_aabb(&aabb, |handle| { + // TODO: apply the filter. + if let Some(collider) = colliders.get(*handle) { + if let Ok(Some(contact)) = parry::query::contact( + &shape_pos, + shape, + collider.position(), + collider.shape(), + self.offset, + ) { + contacts.push((contact, collider)); + } + } + + true + }); + */ + } + + /// Computes the possible movement for a shape. + pub fn move_shape( + &self, + dt: Real, + bodies: &RigidBodySet, + colliders: &ColliderSet, + queries: &QueryPipeline, + character_shape: &dyn Shape, + character_pos: &Isometry<Real>, + desired_translation: Vector<Real>, + filter: QueryFilter, + mut events: impl FnMut(CharacterCollision), + ) -> EffectiveCharacterMovement { + let mut result = EffectiveCharacterMovement { + translation: Vector::zeros(), + grounded: false, + }; + + let extents = character_shape.compute_local_aabb().extents(); + let up_extent = extents.dot(&self.up); + let side_extent = (extents - *self.up * up_extent).norm(); + let dims = Vector2::new(side_extent, up_extent); + + // 1. Check and fix penetrations. + self.check_and_fix_penetrations(); + + let mut translation_remaining = desired_translation; + + // Check if we are grounded at the initial position. + let grounded_at_starting_pos = self.detect_grounded_status_and_apply_friction( + dt, + bodies, + colliders, + queries, + character_shape, + &character_pos, + &dims, + filter, + None, + None, + ); + + // println!("Init grounded status: {grounded_at_starting_pos}"); + + let mut max_iters = 20; + let mut kinematic_friction_translation = Vector::zeros(); + let offset = self.offset.eval(dims.y); + + while let Some((translation_dir, translation_dist)) = + UnitVector::try_new_and_get(translation_remaining, 1.0e-5) + { + if max_iters == 0 { + break; + } else { + max_iters -= 1; + } + + // 2. Cast towards the movement direction. + if let Some((handle, toi)) = queries.cast_shape( + bodies, + colliders, + &(Translation::from(result.translation) * character_pos), + &translation_dir, + character_shape, + translation_dist + offset, + false, + filter, + ) { + // We hit something, compute the allowed self. + let allowed_dist = + (toi.toi - (-toi.normal1.dot(&translation_dir)) * offset).max(0.0); + let allowed_translation = *translation_dir * allowed_dist; + result.translation += allowed_translation; + translation_remaining -= allowed_translation; + + events(CharacterCollision { + handle, + character_pos: Translation::from(result.translation) * character_pos, + translation_applied: result.translation, + translation_remaining, + toi, + }); + + if let (Some(translation_on_slope), _) = + self.handle_slopes(&toi, &mut translation_remaining) + { + translation_remaining = translation_on_slope; + } else { + // If the slope is too big, try to step on the stair. + self.handle_stairs( + bodies, + colliders, + queries, + character_shape, + &(Translation::from(result.translation) * character_pos), + &dims, + filter, + handle, + &mut translation_remaining, + &mut result, + ); + } + } else { + // No interference along the path. + result.translation += translation_remaining; + translation_remaining.fill(0.0); + break; + } + + result.grounded = self.detect_grounded_status_and_apply_friction( + dt, + bodies, + colliders, + queries, + character_shape, + &(Translation::from(result.translation) * character_pos), + &dims, + filter, + Some(&mut kinematic_friction_translation), + Some(&mut translation_remaining), + ); + + if !self.slide { + break; + } + } + + // If needed, and if we are not already grounded, snap to the ground. + if grounded_at_starting_pos { + self.snap_to_ground( + bodies, + colliders, + queries, + character_shape, + &(Translation::from(result.translation) * character_pos), + &dims, + filter, + &mut result, + ); + } + + // Return the result. + result + } + + fn snap_to_ground( + &self, + bodies: &RigidBodySet, + colliders: &ColliderSet, + queries: &QueryPipeline, + character_shape: &dyn Shape, + character_pos: &Isometry<Real>, + dims: &Vector2<Real>, + filter: QueryFilter, + result: &mut EffectiveCharacterMovement, + ) -> Option<(ColliderHandle, TOI)> { + if let Some(snap_distance) = self.snap_to_ground { + let snap_distance = snap_distance.eval(dims.y); + if result.translation.dot(&self.up) < 1.0e-5 { + let offset = self.offset.eval(dims.y); + if let Some((hit_handle, hit)) = queries.cast_shape( + bodies, + colliders, + character_pos, + &-self.up, + character_shape, + snap_distance + offset, + false, + filter, + ) { + // Apply the snap. + result.translation -= *self.up * (hit.toi - offset).max(0.0); + result.grounded = true; + return Some((hit_handle, hit)); + } + } + } + + None + } + + fn detect_grounded_status_and_apply_friction( + &self, + dt: Real, + bodies: &RigidBodySet, + colliders: &ColliderSet, + queries: &QueryPipeline, + character_shape: &dyn Shape, + character_pos: &Isometry<Real>, + dims: &Vector2<Real>, + filter: QueryFilter, + mut kinematic_friction_translation: Option<&mut Vector<Real>>, + mut translation_remaining: Option<&mut Vector<Real>>, + ) -> bool { + let prediction = self.offset.eval(dims.y) * 1.1; + + // TODO: allow custom dispatchers. + let dispatcher = DefaultQueryDispatcher; + + let mut manifolds: Vec<ContactManifold> = vec![]; + let character_aabb = character_shape + .compute_aabb(character_pos) + .loosened(prediction); + + let mut grounded = false; + + queries.colliders_with_aabb_intersecting_aabb(&character_aabb, |handle| { + if let Some(collider) = colliders.get(*handle) { + if filter.test(bodies, *handle, collider) { + manifolds.clear(); + let pos12 = character_pos.inv_mul(collider.position()); + let _ = dispatcher.contact_manifolds( + &pos12, + character_shape, + collider.shape(), + prediction, + &mut manifolds, + &mut None, + ); + + if let (Some(kinematic_friction_translation), Some(translation_remaining)) = ( + kinematic_friction_translation.as_deref_mut(), + translation_remaining.as_deref_mut(), + ) { + let init_kinematic_friction_translation = *kinematic_friction_translation; + let kinematic_parent = collider + .parent + .and_then(|p| bodies.get(p.handle)) + .filter(|rb| rb.is_kinematic()); + + for m in &manifolds { + let normal1 = character_pos * m.local_n1; + let normal2 = -normal1; + + if normal1.dot(&self.up) <= -1.0e-5 { + grounded = true; + } + + if let Some(kinematic_parent) = kinematic_parent { + let mut num_active_contacts = 0; + let mut manifold_center = Point::origin(); + + for contact in &m.points { + if contact.dist <= prediction { + num_active_contacts += 1; + let contact_point = collider.position() * contact.local_p2; + let target_vel = + kinematic_parent.velocity_at_point(&contact_point); + + let normal_target_mvt = target_vel.dot(&normal2) * dt; + let normal_current_mvt = + translation_remaining.dot(&normal2); + + manifold_center += contact_point.coords; + *translation_remaining += normal2 + * (normal_target_mvt - normal_current_mvt).max(0.0); + } + } + + if num_active_contacts > 0 { + let target_vel = kinematic_parent.velocity_at_point( + &(manifold_center / num_active_contacts as Real), + ); + let tangent_platform_mvt = + (target_vel - normal2 * target_vel.dot(&normal2)) * dt; + kinematic_friction_translation.zip_apply( + &tangent_platform_mvt, + |y, x| { + if x.abs() > (*y).abs() { + *y = x; + } + }, + ); + } + } + } + + *translation_remaining += + *kinematic_friction_translation - init_kinematic_friction_translation; + } else { + for m in &manifolds { + let normal = character_pos * m.local_n1; + + if normal.dot(&self.up) <= -1.0e-5 { + for contact in &m.points { + if contact.dist <= prediction { + grounded = true; + return false; // We can stop the search early. + } + } + } + } + } + } + } + true + }); + + grounded + } + + fn handle_slopes( + &self, + hit: &TOI, + translation_remaining: &Vector<Real>, + ) -> (Option<Vector<Real>>, Real) { + let vertical_translation_remaining = *self.up * (self.up.dot(translation_remaining)); + let horizontal_translation_remaining = + *translation_remaining - vertical_translation_remaining; + + // The idea behind this `if` statement is as follows: + // - If there is any amount of horizontal translations, then the intended + // climb/slide down movement is decided by that translation. + // - If there is no horizontal translation, then we only have gravity. In that case, + // we take the vertical movement into account to decide if we need to slide down. + let sliding_translation_remaining = if horizontal_translation_remaining != Vector::zeros() { + horizontal_translation_remaining + - *hit.normal1 * (horizontal_translation_remaining).dot(&hit.normal1) + } else { + vertical_translation_remaining + - *hit.normal1 * (vertical_translation_remaining).dot(&hit.normal1) + }; + + // Check if there is a slope we can climb. + let angle_with_floor = self.up.angle(&hit.normal1); + let climbing = self.up.dot(&sliding_translation_remaining) >= 0.0; + + if !climbing { + // Moving down the slope. + let remaining = if angle_with_floor >= self.min_slope_slide_angle { + // Can slide down. + sliding_translation_remaining + } else { + // To avoid sliding down, we remove the sliding component due to the vertical + // part of the movement but have to keep the component due to the horizontal + // part of the self. + *translation_remaining + - (*hit.normal1 * horizontal_translation_remaining.dot(&hit.normal1) + + vertical_translation_remaining) + // Remove the complete vertical part. + }; + + (Some(remaining), -angle_with_floor) + } else { + // Moving up the slope. + let remaining = if angle_with_floor <= self.max_slope_climb_angle { + // Let’s climb by cancelling from the desired movement the part that + // doesn’t line up with the slope, and continuing the loop. + Some(sliding_translation_remaining) + } else { + // The slope was too steep. + None + }; + + (remaining, angle_with_floor) + } + } + + fn handle_stairs( + &self, + bodies: &RigidBodySet, + colliders: &ColliderSet, + queries: &QueryPipeline, + character_shape: &dyn Shape, + character_pos: &Isometry<Real>, + dims: &Vector2<Real>, + mut filter: QueryFilter, + stair_handle: ColliderHandle, + translation_remaining: &mut Vector<Real>, + result: &mut EffectiveCharacterMovement, + ) -> bool { + if let Some(autostep) = self.autostep { + let min_width = autostep.min_width.eval(dims.x); + let max_height = autostep.max_height.eval(dims.y); + + if !autostep.include_dynamic_bodies { + if colliders + .get(stair_handle) + .and_then(|co| co.parent) + .and_then(|p| bodies.get(p.handle)) + .map(|b| b.is_dynamic()) + == Some(true) + { + // The "stair" is a dynamic body, which the user wants to ignore. + return false; + } + + filter.flags |= QueryFilterFlags::EXCLUDE_DYNAMIC; + } + + let shifted_character_pos = Translation::from(*self.up * max_height) * character_pos; + + if let Some(horizontal_dir) = (*translation_remaining + - *self.up * translation_remaining.dot(&self.up)) + .try_normalize(1.0e-5) + { + if queries + .cast_shape( + bodies, + colliders, + character_pos, + &self.up, + character_shape, + max_height, + false, + filter, + ) + .is_some() + { + // We can’t go up. + return false; + } + + if queries + .cast_shape( + bodies, + colliders, + &shifted_character_pos, + &horizontal_dir, + character_shape, + min_width, + false, + filter, + ) + .is_some() + { + // We don’t have enough room on the stair to stay on it. + return false; + } + + // Check that we are not getting into a ramp that is too steep + // after stepping. + if let Some((_, hit)) = queries.cast_shape( + bodies, + colliders, + &(Translation::from(horizontal_dir * min_width) * shifted_character_pos), + &-self.up, + character_shape, + max_height, + false, + filter, + ) { + let vertical_translation_remaining = + *self.up * (self.up.dot(translation_remaining)); + let horizontal_translation_remaining = + *translation_remaining - vertical_translation_remaining; + let sliding_movement = horizontal_translation_remaining + - *hit.normal1 * horizontal_translation_remaining.dot(&hit.normal1); + + let angle_with_floor = self.up.angle(&hit.normal1); + let climbing = self.up.dot(&sliding_movement) >= 0.0; + + if climbing && angle_with_floor > self.max_slope_climb_angle { + return false; // The target ramp is too steep. + } + } + + // We can step, we need to find the actual step height. + let step_height = self.offset.eval(dims.y) + max_height + - queries + .cast_shape( + bodies, + colliders, + &(Translation::from(horizontal_dir * min_width) + * shifted_character_pos), + &-self.up, + character_shape, + max_height, + false, + filter, + ) + .map(|hit| hit.1.toi) + .unwrap_or(max_height); + + // Remove the step height from the vertical part of the self. + *translation_remaining -= + *self.up * translation_remaining.dot(&self.up).clamp(0.0, step_height); + + // Advance the collider on the step horizontally, to make sure further + // movement won’t just get stuck on its edge. + let horizontal_nudge = + horizontal_dir * min_width.min(horizontal_dir.dot(translation_remaining)); + *translation_remaining -= horizontal_nudge; + + result.translation += *self.up * step_height + horizontal_nudge; + return true; + } + } + + false + } + + pub fn solve_character_collision_impulses( + &self, + dt: Real, + bodies: &mut RigidBodySet, + colliders: &ColliderSet, + queries: &QueryPipeline, + character_shape: &dyn Shape, + character_mass: Real, + collision: &CharacterCollision, + filter: QueryFilter, + ) { + let extents = character_shape.compute_local_aabb().extents(); + let up_extent = extents.dot(&self.up); + let movement_to_transfer = + *collision.toi.normal1 * collision.translation_remaining.dot(&collision.toi.normal1); + let prediction = self.offset.eval(up_extent) * 1.1; + + // TODO: allow custom dispatchers. + let dispatcher = DefaultQueryDispatcher; + + let mut manifolds: Vec<ContactManifold> = vec![]; + let character_aabb = character_shape + .compute_aabb(&collision.character_pos) + .loosened(prediction); + + queries.colliders_with_aabb_intersecting_aabb(&character_aabb, |handle| { + if let Some(collider) = colliders.get(*handle) { + if let Some(parent) = collider.parent { + if filter.test(bodies, *handle, collider) { + if let Some(body) = bodies.get(parent.handle) { + if body.is_dynamic() { + manifolds.clear(); + let pos12 = collision.character_pos.inv_mul(collider.position()); + let prev_manifolds_len = manifolds.len(); + let _ = dispatcher.contact_manifolds( + &pos12, + character_shape, + collider.shape(), + prediction, + &mut manifolds, + &mut None, + ); + + for m in &mut manifolds[prev_manifolds_len..] { + m.data.rigid_body2 = Some(parent.handle); + m.data.normal = collision.character_pos * m.local_n1; + } + } + } + } + } + } + true + }); + + let velocity_to_transfer = movement_to_transfer * utils::inv(dt); + + for manifold in &manifolds { + let body_handle = manifold.data.rigid_body2.unwrap(); + let body = &mut bodies[body_handle]; + + for pt in &manifold.points { + if pt.dist <= prediction { + let body_mass = body.mass(); + let contact_point = body.position() * pt.local_p2; + let delta_vel_per_contact = (velocity_to_transfer + - body.velocity_at_point(&contact_point)) + .dot(&manifold.data.normal); + let mass_ratio = body_mass * character_mass / (body_mass + character_mass); + + body.apply_impulse_at_point( + manifold.data.normal * delta_vel_per_contact.max(0.0) * mass_ratio, + contact_point, + true, + ); + } + } + } + } +} |
