aboutsummaryrefslogtreecommitdiff
path: root/src/linalg/linalg_nalgebra.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/linalg/linalg_nalgebra.rs')
-rw-r--r--src/linalg/linalg_nalgebra.rs459
1 files changed, 459 insertions, 0 deletions
diff --git a/src/linalg/linalg_nalgebra.rs b/src/linalg/linalg_nalgebra.rs
new file mode 100644
index 0000000..bfacf16
--- /dev/null
+++ b/src/linalg/linalg_nalgebra.rs
@@ -0,0 +1,459 @@
+use crate::utils::{
+ simd_inv, SimdAngularInertia, SimdBasis, SimdCapMagnitude, SimdComponent, SimdCross,
+ SimdCrossMatrix, SimdDot, SimdQuat, SimdRealCopy, SimdSign, SimdVec,
+};
+
+use na::{
+ Matrix1, Matrix2, Matrix3, Point2, Point3, RowVector2, Scalar, SimdRealField, UnitComplex,
+ UnitQuaternion, Vector1, Vector2, Vector3,
+};
+use num::Zero;
+use parry::math::{Real, SimdReal};
+use simba::scalar::ClosedMul;
+
+use na::SimdPartialOrd;
+
+impl<N: Scalar + Copy + SimdSign<N>> SimdSign<Vector2<N>> for N {
+ fn copy_sign_to(self, to: Vector2<N>) -> Vector2<N> {
+ Vector2::new(self.copy_sign_to(to.x), self.copy_sign_to(to.y))
+ }
+}
+
+impl<N: Scalar + Copy + SimdSign<N>> SimdSign<Vector3<N>> for N {
+ fn copy_sign_to(self, to: Vector3<N>) -> Vector3<N> {
+ Vector3::new(
+ self.copy_sign_to(to.x),
+ self.copy_sign_to(to.y),
+ self.copy_sign_to(to.z),
+ )
+ }
+}
+
+impl<N: Scalar + Copy + SimdSign<N>> SimdSign<Vector2<N>> for Vector2<N> {
+ fn copy_sign_to(self, to: Vector2<N>) -> Vector2<N> {
+ Vector2::new(self.x.copy_sign_to(to.x), self.y.copy_sign_to(to.y))
+ }
+}
+
+impl<N: Scalar + Copy + SimdSign<N>> SimdSign<Vector3<N>> for Vector3<N> {
+ fn copy_sign_to(self, to: Vector3<N>) -> Vector3<N> {
+ Vector3::new(
+ self.x.copy_sign_to(to.x),
+ self.y.copy_sign_to(to.y),
+ self.z.copy_sign_to(to.z),
+ )
+ }
+}
+
+impl SimdSign<SimdReal> for SimdReal {
+ fn copy_sign_to(self, to: SimdReal) -> SimdReal {
+ to.simd_copysign(self)
+ }
+}
+
+impl SimdComponent for Real {
+ type Element = Real;
+
+ fn min_component(self) -> Self::Element {
+ self
+ }
+ fn max_component(self) -> Self::Element {
+ self
+ }
+}
+
+impl SimdComponent for SimdReal {
+ type Element = Real;
+
+ fn min_component(self) -> Self::Element {
+ self.simd_horizontal_min()
+ }
+ fn max_component(self) -> Self::Element {
+ self.simd_horizontal_max()
+ }
+}
+
+impl<N: SimdRealCopy> SimdBasis for Vector2<N> {
+ type Basis = [Vector2<N>; 1];
+ fn orthonormal_basis(self) -> [Vector2<N>; 1] {
+ [Vector2::new(-self.y, self.x)]
+ }
+ fn orthonormal_vector(self) -> Vector2<N> {
+ Vector2::new(-self.y, self.x)
+ }
+}
+
+impl<N: SimdRealCopy + SimdSign<N>> SimdBasis for Vector3<N> {
+ type Basis = [Vector3<N>; 2];
+ // Robust and branchless implementation from Pixar:
+ // https://graphics.pixar.com/library/OrthonormalB/paper.pdf
+ fn orthonormal_basis(self) -> [Vector3<N>; 2] {
+ let sign = self.z.copy_sign_to(N::one());
+ let a = -N::one() / (sign + self.z);
+ let b = self.x * self.y * a;
+
+ [
+ Vector3::new(
+ N::one() + sign * self.x * self.x * a,
+ sign * b,
+ -sign * self.x,
+ ),
+ Vector3::new(b, sign + self.y * self.y * a, -self.y),
+ ]
+ }
+
+ fn orthonormal_vector(self) -> Vector3<N> {
+ let sign = self.z.copy_sign_to(N::one());
+ let a = -N::one() / (sign + self.z);
+ let b = self.x * self.y * a;
+ Vector3::new(b, sign + self.y * self.y * a, -self.y)
+ }
+}
+
+impl<N> SimdVec for Vector2<N>
+where
+ N: Scalar + Copy + SimdComponent + ClosedMul,
+ N::Element: Scalar,
+{
+ type Element = Vector2<N::Element>;
+
+ fn horizontal_inf(&self) -> Self::Element {
+ Vector2::new(self.x.min_component(), self.y.min_component())
+ }
+
+ fn horizontal_sup(&self) -> Self::Element {
+ Vector2::new(self.x.max_component(), self.y.max_component())
+ }
+
+ fn component_mul_simd(&self, rhs: &Self) -> Self {
+ self.component_mul(rhs)
+ }
+}
+
+impl<N: SimdRealField> SimdCapMagnitude<N> for Vector2<N>
+where
+ N::Element: SimdRealField,
+{
+ fn simd_cap_magnitude(&self, limit: N) -> Self {
+ self.simd_cap_magnitude(limit)
+ }
+}
+
+impl<N: Scalar + Copy + SimdComponent + ClosedMul> SimdVec for Point2<N>
+where
+ N::Element: Scalar,
+{
+ type Element = Point2<N::Element>;
+
+ fn horizontal_inf(&self) -> Self::Element {
+ Point2::new(self.x.min_component(), self.y.min_component())
+ }
+
+ fn horizontal_sup(&self) -> Self::Element {
+ Point2::new(self.x.max_component(), self.y.max_component())
+ }
+
+ fn component_mul_simd(&self, rhs: &Self) -> Self {
+ self.coords.component_mul(&rhs.coords).into()
+ }
+}
+
+impl<N: Scalar + Copy + SimdComponent + ClosedMul> SimdVec for Vector3<N>
+where
+ N::Element: Scalar,
+{
+ type Element = Vector3<N::Element>;
+
+ fn horizontal_inf(&self) -> Self::Element {
+ Vector3::new(
+ self.x.min_component(),
+ self.y.min_component(),
+ self.z.min_component(),
+ )
+ }
+
+ fn horizontal_sup(&self) -> Self::Element {
+ Vector3::new(
+ self.x.max_component(),
+ self.y.max_component(),
+ self.z.max_component(),
+ )
+ }
+
+ fn component_mul_simd(&self, rhs: &Self) -> Self {
+ self.component_mul(rhs)
+ }
+}
+
+impl<N: Scalar + Copy + SimdComponent + ClosedMul> SimdVec for Point3<N>
+where
+ N::Element: Scalar,
+{
+ type Element = Point3<N::Element>;
+
+ fn horizontal_inf(&self) -> Self::Element {
+ Point3::new(
+ self.x.min_component(),
+ self.y.min_component(),
+ self.z.min_component(),
+ )
+ }
+
+ fn horizontal_sup(&self) -> Self::Element {
+ Point3::new(
+ self.x.max_component(),
+ self.y.max_component(),
+ self.z.max_component(),
+ )
+ }
+
+ fn component_mul_simd(&self, rhs: &Self) -> Self {
+ self.coords.component_mul(&rhs.coords).into()
+ }
+}
+
+impl<N: SimdRealCopy> SimdCrossMatrix for Vector3<N> {
+ type CrossMat = Matrix3<N>;
+ type CrossMatTr = Matrix3<N>;
+
+ #[inline]
+ #[rustfmt::skip]
+ fn gcross_matrix(self) -> Self::CrossMat {
+ Matrix3::new(
+ N::zero(), -self.z, self.y,
+ self.z, N::zero(), -self.x,
+ -self.y, self.x, N::zero(),
+ )
+ }
+
+ #[inline]
+ #[rustfmt::skip]
+ fn gcross_matrix_tr(self) -> Self::CrossMatTr {
+ Matrix3::new(
+ N::zero(), self.z, -self.y,
+ -self.z, N::zero(), self.x,
+ self.y, -self.x, N::zero(),
+ )
+ }
+}
+
+impl<N: SimdRealCopy> SimdCrossMatrix for Vector2<N> {
+ type CrossMat = RowVector2<N>;
+ type CrossMatTr = Vector2<N>;
+
+ #[inline]
+ fn gcross_matrix(self) -> Self::CrossMat {
+ RowVector2::new(-self.y, self.x)
+ }
+ #[inline]
+ fn gcross_matrix_tr(self) -> Self::CrossMatTr {
+ Vector2::new(-self.y, self.x)
+ }
+}
+
+#[cfg(feature = "linalg-nalgebra")]
+impl SimdCrossMatrix for Real {
+ type CrossMat = Matrix2<Real>;
+ type CrossMatTr = Matrix2<Real>;
+
+ #[inline]
+ fn gcross_matrix(self) -> Matrix2<Real> {
+ Matrix2::new(0.0, -self, self, 0.0)
+ }
+
+ #[inline]
+ fn gcross_matrix_tr(self) -> Matrix2<Real> {
+ Matrix2::new(0.0, self, -self, 0.0)
+ }
+}
+
+#[cfg(feature = "linalg-nalgebra")]
+impl SimdCrossMatrix for SimdReal {
+ type CrossMat = Matrix2<SimdReal>;
+ type CrossMatTr = Matrix2<SimdReal>;
+
+ #[inline]
+ fn gcross_matrix(self) -> Matrix2<SimdReal> {
+ Matrix2::new(SimdReal::zero(), -self, self, SimdReal::zero())
+ }
+
+ #[inline]
+ fn gcross_matrix_tr(self) -> Matrix2<SimdReal> {
+ Matrix2::new(SimdReal::zero(), self, -self, SimdReal::zero())
+ }
+}
+
+impl SimdCross<Vector3<Real>> for Vector3<Real> {
+ type Result = Self;
+
+ fn gcross(&self, rhs: Vector3<Real>) -> Self::Result {
+ self.cross(rhs)
+ }
+ #[cfg(feature = "dim3")]
+ fn cross_(&self, rhs: &Self) -> Self {
+ self.cross(rhs)
+ }
+}
+
+impl SimdCross<Vector2<Real>> for Vector2<Real> {
+ type Result = Real;
+
+ fn gcross(&self, rhs: Vector2<Real>) -> Self::Result {
+ self.x * rhs.y - self.y * rhs.x
+ }
+
+ #[cfg(feature = "dim3")]
+ fn cross_(&self, _: &Self) -> Self {
+ unreachable!()
+ }
+}
+
+impl SimdCross<Vector2<Real>> for Real {
+ type Result = Vector2<Real>;
+
+ fn gcross(&self, rhs: Vector2<Real>) -> Self::Result {
+ Vector2::new(-rhs.y * *self, rhs.x * *self)
+ }
+
+ #[cfg(feature = "dim3")]
+ fn cross_(&self, _: &Self) -> Self {
+ unreachable!()
+ }
+}
+
+impl<N: SimdRealCopy> SimdDot<Vector3<N>> for Vector3<N> {
+ type Result = N;
+
+ fn gdot(&self, rhs: Vector3<N>) -> Self::Result {
+ self.x * rhs.x + self.y * rhs.y + self.z * rhs.z
+ }
+}
+
+impl<N: SimdRealCopy> SimdDot<Vector2<N>> for Vector2<N> {
+ type Result = N;
+
+ fn gdot(&self, rhs: Vector2<N>) -> Self::Result {
+ self.x * rhs.x + self.y * rhs.y
+ }
+}
+
+impl<N: SimdRealCopy> SimdDot<Vector1<N>> for N {
+ type Result = N;
+
+ fn gdot(&self, rhs: Vector1<N>) -> Self::Result {
+ *self * rhs.x
+ }
+}
+
+impl<N: SimdRealCopy> SimdDot<N> for N {
+ type Result = N;
+
+ fn gdot(&self, rhs: N) -> Self::Result {
+ *self * rhs
+ }
+}
+
+impl<N: SimdRealCopy> SimdDot<N> for Vector1<N> {
+ type Result = N;
+
+ fn gdot(&self, rhs: N) -> Self::Result {
+ self.x * rhs
+ }
+}
+
+impl SimdCross<Vector3<SimdReal>> for Vector3<SimdReal> {
+ type Result = Vector3<SimdReal>;
+
+ fn gcross(&self, rhs: Self) -> Self::Result {
+ self.cross(&rhs)
+ }
+
+ #[cfg(feature = "dim3")]
+ fn cross_(&self, rhs: &Self) -> Self {
+ self.cross(rhs)
+ }
+}
+
+impl SimdCross<Vector2<SimdReal>> for SimdReal {
+ type Result = Vector2<SimdReal>;
+
+ fn gcross(&self, rhs: Vector2<SimdReal>) -> Self::Result {
+ Vector2::new(-rhs.y * *self, rhs.x * *self)
+ }
+
+ #[cfg(feature = "dim3")]
+ fn cross_(&self, rhs: &Self) -> Self {
+ unreachable!()
+ }
+}
+
+impl SimdCross<Vector2<SimdReal>> for Vector2<SimdReal> {
+ type Result = SimdReal;
+
+ fn gcross(&self, rhs: Self) -> Self::Result {
+ let yx = Vector2::new(rhs.y, rhs.x);
+ let prod = self.component_mul(&yx);
+ prod.x - prod.y
+ }
+
+ #[cfg(feature = "dim3")]
+ fn cross_(&self, _: &Self) -> Self {
+ unreachable!()
+ }
+}
+
+impl<N: SimdRealCopy> SimdQuat<N> for UnitComplex<N> {
+ type Result = Matrix1<N>;
+
+ fn diff_conj1_2(&self, rhs: &Self) -> Self::Result {
+ let two: N = N::splat(2.0);
+ Matrix1::new((self.im * rhs.im + self.re * rhs.re) * two)
+ }
+}
+
+impl<N: SimdRealCopy> SimdQuat<N> for UnitQuaternion<N> {
+ type Result = Matrix3<N>;
+
+ fn diff_conj1_2(&self, rhs: &Self) -> Self::Result {
+ let half = N::splat(0.5);
+ let v1 = self.imag();
+ let v2 = rhs.imag();
+ let w1 = self.w;
+ let w2 = rhs.w;
+
+ // TODO: this can probably be optimized a lot by unrolling the ops.
+ (v1 * v2.transpose() + Matrix3::from_diagonal_element(w1 * w2)
+ - (v1 * w2 + v2 * w1).cross_matrix()
+ + v1.cross_matrix() * v2.cross_matrix())
+ * half
+ }
+}
+
+impl<N: SimdRealCopy> SimdAngularInertia<N> for N {
+ type AngVector = N;
+ type LinVector = Vector2<N>;
+ type AngMatrix = N;
+
+ fn inverse(&self) -> Self {
+ simd_inv(*self)
+ }
+
+ fn transform_lin_vector(&self, pt: Vector2<N>) -> Vector2<N> {
+ pt * *self
+ }
+ fn transform_vector(&self, pt: N) -> N {
+ pt * *self
+ }
+
+ fn squared(&self) -> N {
+ *self * *self
+ }
+
+ fn transform_matrix(&self, mat: &Self::AngMatrix) -> Self::AngMatrix {
+ *mat * *self
+ }
+
+ fn into_matrix(self) -> Self::AngMatrix {
+ self
+ }
+}