1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
|
use crate::dynamics::solver::DeltaVel;
use crate::dynamics::{
IntegrationParameters, JointGraphEdge, JointIndex, JointParams, RevoluteJoint, RigidBody,
};
use crate::math::{AngularInertia, Vector};
use crate::utils::{WAngularInertia, WCross, WCrossMatrix};
use na::{Cholesky, Matrix3x2, Matrix5, Vector5, U2, U3};
#[derive(Debug)]
pub(crate) struct RevoluteVelocityConstraint {
mj_lambda1: usize,
mj_lambda2: usize,
joint_id: JointIndex,
r1: Vector<f32>,
r2: Vector<f32>,
inv_lhs: Matrix5<f32>,
rhs: Vector5<f32>,
impulse: Vector5<f32>,
basis1: Matrix3x2<f32>,
im1: f32,
im2: f32,
ii1_sqrt: AngularInertia<f32>,
ii2_sqrt: AngularInertia<f32>,
}
impl RevoluteVelocityConstraint {
pub fn from_params(
params: &IntegrationParameters,
joint_id: JointIndex,
rb1: &RigidBody,
rb2: &RigidBody,
cparams: &RevoluteJoint,
) -> Self {
// Linear part.
let anchor1 = rb1.position * cparams.local_anchor1;
let anchor2 = rb2.position * cparams.local_anchor2;
let basis1 = Matrix3x2::from_columns(&[
rb1.position * cparams.basis1[0],
rb1.position * cparams.basis1[1],
]);
// let r21 = Rotation::rotation_between_axis(&axis1, &axis2)
// .unwrap_or(Rotation::identity())
// .to_rotation_matrix()
// .into_inner();
// let basis2 = r21 * basis1;
// NOTE: to simplify, we use basis2 = basis1.
// Though we may want to test if that does not introduce any instability.
let im1 = rb1.mass_properties.inv_mass;
let im2 = rb2.mass_properties.inv_mass;
let ii1 = rb1.world_inv_inertia_sqrt.squared();
let r1 = anchor1 - rb1.world_com;
let r1_mat = r1.gcross_matrix();
let ii2 = rb2.world_inv_inertia_sqrt.squared();
let r2 = anchor2 - rb2.world_com;
let r2_mat = r2.gcross_matrix();
let mut lhs = Matrix5::zeros();
let lhs00 =
ii2.quadform(&r2_mat).add_diagonal(im2) + ii1.quadform(&r1_mat).add_diagonal(im1);
let lhs10 = basis1.tr_mul(&(ii2 * r2_mat + ii1 * r1_mat));
let lhs11 = (ii1 + ii2).quadform3x2(&basis1).into_matrix();
// Note that cholesky won't read the upper-right part
// of lhs so we don't have to fill it.
lhs.fixed_slice_mut::<U3, U3>(0, 0)
.copy_from(&lhs00.into_matrix());
lhs.fixed_slice_mut::<U2, U3>(3, 0).copy_from(&lhs10);
lhs.fixed_slice_mut::<U2, U2>(3, 3).copy_from(&lhs11);
let inv_lhs = Cholesky::new_unchecked(lhs).inverse();
let lin_rhs = rb2.linvel + rb2.angvel.gcross(r2) - rb1.linvel - rb1.angvel.gcross(r1);
let ang_rhs = basis1.tr_mul(&(rb2.angvel - rb1.angvel));
let rhs = Vector5::new(lin_rhs.x, lin_rhs.y, lin_rhs.z, ang_rhs.x, ang_rhs.y);
RevoluteVelocityConstraint {
joint_id,
mj_lambda1: rb1.active_set_offset,
mj_lambda2: rb2.active_set_offset,
im1,
ii1_sqrt: rb1.world_inv_inertia_sqrt,
basis1,
im2,
ii2_sqrt: rb2.world_inv_inertia_sqrt,
impulse: cparams.impulse * params.warmstart_coeff,
inv_lhs,
rhs,
r1,
r2,
}
}
pub fn warmstart(&self, mj_lambdas: &mut [DeltaVel<f32>]) {
let mut mj_lambda1 = mj_lambdas[self.mj_lambda1 as usize];
let mut mj_lambda2 = mj_lambdas[self.mj_lambda2 as usize];
let lin_impulse = self.impulse.fixed_rows::<U3>(0).into_owned();
let ang_impulse = self.basis1 * self.impulse.fixed_rows::<U2>(3).into_owned();
mj_lambda1.linear += self.im1 * lin_impulse;
mj_lambda1.angular += self
.ii1_sqrt
.transform_vector(ang_impulse + self.r1.gcross(lin_impulse));
mj_lambda2.linear -= self.im2 * lin_impulse;
mj_lambda2.angular -= self
.ii2_sqrt
.transform_vector(ang_impulse + self.r2.gcross(lin_impulse));
mj_lambdas[self.mj_lambda1 as usize] = mj_lambda1;
mj_lambdas[self.mj_lambda2 as usize] = mj_lambda2;
}
pub fn solve(&mut self, mj_lambdas: &mut [DeltaVel<f32>]) {
let mut mj_lambda1 = mj_lambdas[self.mj_lambda1 as usize];
let mut mj_lambda2 = mj_lambdas[self.mj_lambda2 as usize];
let ang_vel1 = self.ii1_sqrt.transform_vector(mj_lambda1.angular);
let ang_vel2 = self.ii2_sqrt.transform_vector(mj_lambda2.angular);
let lin_dvel = mj_lambda2.linear + ang_vel2.gcross(self.r2)
- mj_lambda1.linear
- ang_vel1.gcross(self.r1);
let ang_dvel = self.basis1.tr_mul(&(ang_vel2 - ang_vel1));
let rhs =
Vector5::new(lin_dvel.x, lin_dvel.y, lin_dvel.z, ang_dvel.x, ang_dvel.y) + self.rhs;
let impulse = self.inv_lhs * rhs;
self.impulse += impulse;
let lin_impulse = impulse.fixed_rows::<U3>(0).into_owned();
let ang_impulse = self.basis1 * impulse.fixed_rows::<U2>(3).into_owned();
mj_lambda1.linear += self.im1 * lin_impulse;
mj_lambda1.angular += self
.ii1_sqrt
.transform_vector(ang_impulse + self.r1.gcross(lin_impulse));
mj_lambda2.linear -= self.im2 * lin_impulse;
mj_lambda2.angular -= self
.ii2_sqrt
.transform_vector(ang_impulse + self.r2.gcross(lin_impulse));
mj_lambdas[self.mj_lambda1 as usize] = mj_lambda1;
mj_lambdas[self.mj_lambda2 as usize] = mj_lambda2;
}
pub fn writeback_impulses(&self, joints_all: &mut [JointGraphEdge]) {
let joint = &mut joints_all[self.joint_id].weight;
if let JointParams::RevoluteJoint(revolute) = &mut joint.params {
revolute.impulse = self.impulse;
}
}
}
#[derive(Debug)]
pub(crate) struct RevoluteVelocityGroundConstraint {
mj_lambda2: usize,
joint_id: JointIndex,
r2: Vector<f32>,
inv_lhs: Matrix5<f32>,
rhs: Vector5<f32>,
impulse: Vector5<f32>,
basis1: Matrix3x2<f32>,
im2: f32,
ii2_sqrt: AngularInertia<f32>,
}
impl RevoluteVelocityGroundConstraint {
pub fn from_params(
params: &IntegrationParameters,
joint_id: JointIndex,
rb1: &RigidBody,
rb2: &RigidBody,
cparams: &RevoluteJoint,
flipped: bool,
) -> Self {
let anchor2;
let anchor1;
let basis1;
if flipped {
anchor1 = rb1.position * cparams.local_anchor2;
anchor2 = rb2.position * cparams.local_anchor1;
basis1 = Matrix3x2::from_columns(&[
rb1.position *
|