1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
use crate::dynamics::solver::PositionGroundConstraint;
#[cfg(feature = "simd-is-enabled")]
use crate::dynamics::solver::{WPositionConstraint, WPositionGroundConstraint};
use crate::dynamics::{IntegrationParameters, RigidBodySet};
use crate::geometry::{ContactManifold, KinematicsCategory};
use crate::math::{
AngularInertia, Isometry, Point, Rotation, Translation, Vector, MAX_MANIFOLD_POINTS,
};
use crate::utils::{WAngularInertia, WCross, WDot};
pub(crate) enum AnyPositionConstraint {
#[cfg(feature = "simd-is-enabled")]
GroupedPointPointGround(WPositionGroundConstraint),
#[cfg(feature = "simd-is-enabled")]
GroupedPlanePointGround(WPositionGroundConstraint),
NongroupedPointPointGround(PositionGroundConstraint),
NongroupedPlanePointGround(PositionGroundConstraint),
#[cfg(feature = "simd-is-enabled")]
GroupedPointPoint(WPositionConstraint),
#[cfg(feature = "simd-is-enabled")]
GroupedPlanePoint(WPositionConstraint),
NongroupedPointPoint(PositionConstraint),
NongroupedPlanePoint(PositionConstraint),
#[allow(dead_code)] // The Empty variant is only used with parallel code.
Empty,
}
impl AnyPositionConstraint {
pub fn solve(&self, params: &IntegrationParameters, positions: &mut [Isometry<f32>]) {
match self {
#[cfg(feature = "simd-is-enabled")]
AnyPositionConstraint::GroupedPointPointGround(c) => {
c.solve_point_point(params, positions)
}
#[cfg(feature = "simd-is-enabled")]
AnyPositionConstraint::GroupedPlanePointGround(c) => {
c.solve_plane_point(params, positions)
}
AnyPositionConstraint::NongroupedPointPointGround(c) => {
c.solve_point_point(params, positions)
}
AnyPositionConstraint::NongroupedPlanePointGround(c) => {
c.solve_plane_point(params, positions)
}
#[cfg(feature = "simd-is-enabled")]
AnyPositionConstraint::GroupedPointPoint(c) => c.solve_point_point(params, positions),
#[cfg(feature = "simd-is-enabled")]
AnyPositionConstraint::GroupedPlanePoint(c) => c.solve_plane_point(params, positions),
AnyPositionConstraint::NongroupedPointPoint(c) => {
c.solve_point_point(params, positions)
}
AnyPositionConstraint::NongroupedPlanePoint(c) => {
c.solve_plane_point(params, positions)
}
AnyPositionConstraint::Empty => unreachable!(),
}
}
}
pub(crate) struct PositionConstraint {
pub rb1: usize,
pub rb2: usize,
// NOTE: the points are relative to the center of masses.
pub local_p1: [Point<f32>; MAX_MANIFOLD_POINTS],
pub local_p2: [Point<f32>; MAX_MANIFOLD_POINTS],
pub local_n1: Vector<f32>,
pub num_contacts: u8,
pub radius: f32,
pub im1: f32,
pub im2: f32,
pub ii1: AngularInertia<f32>,
pub ii2: AngularInertia<f32>,
pub erp: f32,
pub max_linear_correction: f32,
}
impl PositionConstraint {
#[cfg(feature = "parallel")]
pub fn num_active_constraints(manifold: &ContactManifold) -> usize {
let rest = manifold.num_active_contacts() % MAX_MANIFOLD_POINTS != 0;
manifold.num_active_contacts() / MAX_MANIFOLD_POINTS + rest as usize
}
pub fn generate(
params: &IntegrationParameters,
manifold: &ContactManifold,
bodies: &RigidBodySet,
out_constraints: &mut Vec<AnyPositionConstraint>,
push: bool,
) {
let rb1 = &bodies[manifold.body_pair.body1];
let rb2 = &bodies[manifold.body_pair.body2];
let shift1 = manifold.local_n1 * -manifold.kinematics.radius1;
let shift2 = manifold.local_n2 * -manifold.kinematics.radius2;
let radius =
manifold.kinematics.radius1 + manifold.kinematics.radius2 /*- params.allowed_linear_error*/;
for (l, manifold_points) in manifold
.active_contacts()
.chunks(MAX_MANIFOLD_POINTS)
.enumerate()
{
let mut local_p1 = [Point::origin(); MAX_MANIFOLD_POINTS];
let mut local_p2 = [Point::origin(); MAX_MANIFOLD_POINTS];
for l in 0..manifold_points.len() {
local_p1[l] = manifold.delta1 * (manifold_points[l].local_p1 + shift1);
local_p2[l] = manifold.delta2 * (manifold_points[l].local_p2 + shift2);
}
let constraint = PositionConstraint {
rb1: rb1.active_set_offset,
rb2: rb2.active_set_offset,
local_p1,
local_p2,
local_n1: manifold.local_n1,
radius,
im1: rb1.mass_properties.inv_mass,
im2: rb2.mass_properties.inv_mass,
ii1: rb1.world_inv_inertia_sqrt.squared(),
ii2: rb2.world_inv_inertia_sqrt.squared(),
num_contacts: manifold_points.len() as u8,
erp: params.erp,
max_linear_correction: params.max_linear_correction,
};
if push {
if manifold.kinematics.category == KinematicsCategory::PointPoint {
out_constraints.push(AnyPositionConstraint::NongroupedPointPoint(constraint));
} else {
out_constraints.push(AnyPositionConstraint::NongroupedPlanePoint(constraint));
}
} else {
if manifold.kinematics.category == KinematicsCategory::PointPoint {
out_constraints[manifold.constraint_index + l] =
AnyPositionConstraint::NongroupedPointPoint(constraint);
} else {
out_constraints[manifold.constraint_index + l] =
AnyPositionConstraint::NongroupedPlanePoint(constraint);
}
}
}
}
pub fn solve_point_point(
&self,
params: &IntegrationParameters,
positions: &mut [Isometry<f32>],
) {
// FIXME: can we avoid most of the multiplications by pos1/pos2?
// Compute jacobians.
let mut pos1 = positions[self.rb1];
let mut pos2 = positions[self.rb2];
let allowed_err = params.allowed_linear_error;
let target_dist = self.radius - allowed_err;
for k in 0..self.num_contacts as usize {
let p1 = pos1 * self.local_p1[k];
let p2 = pos2 * self.local_p2[k];
let dpos = p2 - p1;
let sqdist = dpos.norm_squared();
// NOTE: only works for the point-point case.
if sqdist < target_dist * target_dist {
let dist = sqdist.sqrt();
let n = dpos / dist;
let err = ((dist - target_dist) * self.erp).max(-self.max_linear_correction);
let dp1 = p1.coords - pos1.translation.vector;
let dp2 = p2.coords - pos2.translation.vector;
let gcross1 = dp1.gcross(n);
let gcross2 = -dp2.gcross(n);
let ii_gcross1 = self.ii1.transform_vector(gcross1);
let ii_gcross2 = self.ii2.transform_vector(gcross2);
// Compute impulse.
let inv_r =
self.im1 + self.im2 + gcross1.gdot(ii_gcross1) + gcross2.gdot(ii_gcross2);
let impulse = err / inv_r;
// Apply impulse.
let tra1 = Translation::from(n * (impulse * self.im1));
let tra2 = Translation::from(n * (-impulse * self.im2));
let rot1 = Rotation::new(ii_gcross1 * impulse);
let rot2 = Rotation::new(ii_gcross2 * impulse);
pos1 = Isometry::from_parts(tra1 * pos1.translation, rot1 * pos1.rotation);
pos2 = Isometry::from_parts(tra2 * pos2.translation, rot2 * pos2.rotation);
}
}
positions[self.rb1] = pos1;
positions[self.rb2] = pos2;
}
pub fn solve_plane_point(
&self,
params: &IntegrationParameters,
positions: &mut [Isometry<f32>],
) {
// FIXME: can we avoid most of the multiplications by pos1/pos2?
// Compute jacobians.
let mut pos1 =
|