1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
use crate::dynamics::solver::PositionGroundConstraint;
#[cfg(feature = "simd-is-enabled")]
use crate::dynamics::solver::{WPositionConstraint, WPositionGroundConstraint};
use crate::dynamics::{IntegrationParameters, RigidBodySet};
use crate::geometry::ContactManifold;
use crate::math::{
AngularInertia, Isometry, Point, Real, Rotation, Translation, Vector, MAX_MANIFOLD_POINTS,
};
use crate::utils::{WAngularInertia, WCross, WDot};
pub(crate) enum AnyPositionConstraint {
#[cfg(feature = "simd-is-enabled")]
GroupedGround(WPositionGroundConstraint),
NonGroupedGround(PositionGroundConstraint),
#[cfg(feature = "simd-is-enabled")]
GroupedNonGround(WPositionConstraint),
NonGroupedNonGround(PositionConstraint),
#[allow(dead_code)] // The Empty variant is only used with parallel code.
Empty,
}
impl AnyPositionConstraint {
pub fn solve(&self, params: &IntegrationParameters, positions: &mut [Isometry<Real>]) {
match self {
#[cfg(feature = "simd-is-enabled")]
AnyPositionConstraint::GroupedGround(c) => c.solve(params, positions),
AnyPositionConstraint::NonGroupedGround(c) => c.solve(params, positions),
#[cfg(feature = "simd-is-enabled")]
AnyPositionConstraint::GroupedNonGround(c) => c.solve(params, positions),
AnyPositionConstraint::NonGroupedNonGround(c) => c.solve(params, positions),
AnyPositionConstraint::Empty => unreachable!(),
}
}
}
pub(crate) struct PositionConstraint {
pub rb1: usize,
pub rb2: usize,
// NOTE: the points are relative to the center of masses.
pub local_p1: [Point<Real>; MAX_MANIFOLD_POINTS],
pub local_p2: [Point<Real>; MAX_MANIFOLD_POINTS],
pub dists: [Real; MAX_MANIFOLD_POINTS],
pub local_n1: Vector<Real>,
pub num_contacts: u8,
pub im1: Real,
pub im2: Real,
pub ii1: AngularInertia<Real>,
pub ii2: AngularInertia<Real>,
pub erp: Real,
pub max_linear_correction: Real,
}
impl PositionConstraint {
pub fn generate(
params: &IntegrationParameters,
manifold: &ContactManifold,
bodies: &RigidBodySet,
out_constraints: &mut Vec<AnyPositionConstraint>,
push: bool,
) {
let rb1 = &bodies[manifold.data.body_pair.body1];
let rb2 = &bodies[manifold.data.body_pair.body2];
for (l, manifold_points) in manifold
.data
.solver_contacts
.chunks(MAX_MANIFOLD_POINTS)
.enumerate()
{
let mut local_p1 = [Point::origin(); MAX_MANIFOLD_POINTS];
let mut local_p2 = [Point::origin(); MAX_MANIFOLD_POINTS];
let mut dists = [0.0; MAX_MANIFOLD_POINTS];
for l in 0..manifold_points.len() {
local_p1[l] = rb1
.position
.inverse_transform_point(&manifold_points[l].point);
local_p2[l] = rb2
.position
.inverse_transform_point(&manifold_points[l].point);
dists[l] = manifold_points[l].dist;
}
let constraint = PositionConstraint {
rb1: rb1.active_set_offset,
rb2: rb2.active_set_offset,
local_p1,
local_p2,
local_n1: rb1.position.inverse_transform_vector(&manifold.data.normal),
dists,
im1: rb1.effective_inv_mass,
im2: rb2.effective_inv_mass,
ii1: rb1.effective_world_inv_inertia_sqrt.squared(),
ii2: rb2.effective_world_inv_inertia_sqrt.squared(),
num_contacts: manifold_points.len() as u8,
erp: params.erp,
max_linear_correction: params.max_linear_correction,
};
if push {
out_constraints.push(AnyPositionConstraint::NonGroupedNonGround(constraint));
} else {
out_constraints[manifold.data.constraint_index + l] =
AnyPositionConstraint::NonGroupedNonGround(constraint);
}
}
}
pub fn solve(&self, params: &IntegrationParameters, positions: &mut [Isometry<Real>]) {
// FIXME: can we avoid most of the multiplications by pos1/pos2?
// Compute jacobians.
let mut pos1 = positions[self.rb1];
let mut pos2 = positions[self.rb2];
let allowed_err = params.allowed_linear_error;
for k in 0..self.num_contacts as usize {
let target_dist = -self.dists[k] - allowed_err;
let n1 = pos1 * self.local_n1;
let p1 = pos1 * self.local_p1[k];
let p2 = pos2 * self.local_p2[k];
let dpos = p2 - p1;
let dist = dpos.dot(&n1);
if dist < target_dist {
let p1 = p2 - n1 * dist;
let err = ((dist - target_dist) * self.erp).max(-self.max_linear_correction);
let dp1 = p1.coords - pos1.translation.vector;
let dp2 = p2.coords - pos2.translation.vector;
let gcross1 = dp1.gcross(n1);
let gcross2 = -dp2.gcross(n1);
let ii_gcross1 = self.ii1.transform_vector(gcross1);
let ii_gcross2 = self.ii2.transform_vector(gcross2);
// Compute impulse.
let inv_r =
self.im1 + self.im2 + gcross1.gdot(ii_gcross1) + gcross2.gdot(ii_gcross2);
let impulse = err / inv_r;
// Apply impulse.
let tra1 = Translation::from(n1 * (impulse * self.im1));
let tra2 = Translation::from(n1 * (-impulse * self.im2));
let rot1 = Rotation::new(ii_gcross1 * impulse);
let rot2 = Rotation::new(ii_gcross2 * impulse);
pos1 = Isometry::from_parts(tra1 * pos1.translation, rot1 * pos1.rotation);
pos2 = Isometry::from_parts(tra2 * pos2.translation, rot2 * pos2.rotation);
}
}
positions[self.rb1] = pos1;
positions[self.rb2] = pos2;
}
}
|