1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
use super::AnyPositionConstraint;
use crate::dynamics::{IntegrationParameters, RigidBodySet};
use crate::geometry::ContactManifold;
use crate::math::{
AngularInertia, Isometry, Point, Real, Rotation, SimdReal, Translation, Vector,
MAX_MANIFOLD_POINTS, SIMD_WIDTH,
};
use crate::utils::{WAngularInertia, WCross, WDot};
use num::Zero;
use simba::simd::{SimdBool as _, SimdPartialOrd, SimdValue};
pub(crate) struct WPositionConstraint {
pub rb1: [usize; SIMD_WIDTH],
pub rb2: [usize; SIMD_WIDTH],
// NOTE: the points are relative to the center of masses.
pub local_p1: [Point<SimdReal>; MAX_MANIFOLD_POINTS],
pub local_p2: [Point<SimdReal>; MAX_MANIFOLD_POINTS],
pub dists: [SimdReal; MAX_MANIFOLD_POINTS],
pub local_n1: Vector<SimdReal>,
pub im1: SimdReal,
pub im2: SimdReal,
pub ii1: AngularInertia<SimdReal>,
pub ii2: AngularInertia<SimdReal>,
pub erp: SimdReal,
pub max_linear_correction: SimdReal,
pub num_contacts: u8,
}
impl WPositionConstraint {
pub fn generate(
params: &IntegrationParameters,
manifolds: [&ContactManifold; SIMD_WIDTH],
bodies: &RigidBodySet,
out_constraints: &mut Vec<AnyPositionConstraint>,
push: bool,
) {
let rbs1 = array![|ii| bodies.get(manifolds[ii].data.body_pair.body1).unwrap(); SIMD_WIDTH];
let rbs2 = array![|ii| bodies.get(manifolds[ii].data.body_pair.body2).unwrap(); SIMD_WIDTH];
let im1 = SimdReal::from(array![|ii| rbs1[ii].effective_inv_mass; SIMD_WIDTH]);
let sqrt_ii1: AngularInertia<SimdReal> = AngularInertia::from(
array![|ii| rbs1[ii].effective_world_inv_inertia_sqrt; SIMD_WIDTH],
);
let im2 = SimdReal::from(array![|ii| rbs2[ii].effective_inv_mass; SIMD_WIDTH]);
let sqrt_ii2: AngularInertia<SimdReal> = AngularInertia::from(
array![|ii| rbs2[ii].effective_world_inv_inertia_sqrt; SIMD_WIDTH],
);
let pos1 = Isometry::from(array![|ii| rbs1[ii].position; SIMD_WIDTH]);
let pos2 = Isometry::from(array![|ii| rbs2[ii].position; SIMD_WIDTH]);
let local_n1 = pos1.inverse_transform_vector(&Vector::from(
array![|ii| manifolds[ii].data.normal; SIMD_WIDTH],
));
let rb1 = array![|ii| rbs1[ii].active_set_offset; SIMD_WIDTH];
let rb2 = array![|ii| rbs2[ii].active_set_offset; SIMD_WIDTH];
let num_active_contacts = manifolds[0].data.num_active_contacts();
for l in (0..num_active_contacts).step_by(MAX_MANIFOLD_POINTS) {
let manifold_points = array![|ii| &manifolds[ii].data.solver_contacts[l..]; SIMD_WIDTH];
let num_points = manifold_points[0].len().min(MAX_MANIFOLD_POINTS);
let mut constraint = WPositionConstraint {
rb1,
rb2,
local_p1: [Point::origin(); MAX_MANIFOLD_POINTS],
local_p2: [Point::origin(); MAX_MANIFOLD_POINTS],
local_n1,
dists: [SimdReal::zero(); MAX_MANIFOLD_POINTS],
im1,
im2,
ii1: sqrt_ii1.squared(),
ii2: sqrt_ii2.squared(),
erp: SimdReal::splat(params.erp),
max_linear_correction: SimdReal::splat(params.max_linear_correction),
num_contacts: num_points as u8,
};
for i in 0..num_points {
let point = Point::from(array![|ii| manifold_points[ii][i].point; SIMD_WIDTH]);
let dist = SimdReal::from(array![|ii| manifold_points[ii][i].dist; SIMD_WIDTH]);
constraint.local_p1[i] = pos1.inverse_transform_point(&point);
constraint.local_p2[i] = pos2.inverse_transform_point(&point);
constraint.dists[i] = dist;
}
if push {
out_constraints.push(AnyPositionConstraint::GroupedNonGround(constraint));
} else {
out_constraints[manifolds[0].data.constraint_index + l / MAX_MANIFOLD_POINTS] =
AnyPositionConstraint::GroupedNonGround(constraint);
}
}
}
pub fn solve(&self, params: &IntegrationParameters, positions: &mut [Isometry<Real>]) {
// FIXME: can we avoid most of the multiplications by pos1/pos2?
// Compute jacobians.
let mut pos1 = Isometry::from(array![|ii| positions[self.rb1[ii]]; SIMD_WIDTH]);
let mut pos2 = Isometry::from(array![|ii| positions[self.rb2[ii]]; SIMD_WIDTH]);
let allowed_err = SimdReal::splat(params.allowed_linear_error);
for k in 0..self.num_contacts as usize {
let target_dist = -self.dists[k] - allowed_err;
let n1 = pos1 * self.local_n1;
let p1 = pos1 * self.local_p1[k];
let p2 = pos2 * self.local_p2[k];
let dpos = p2 - p1;
let dist = dpos.dot(&n1);
// NOTE: this condition does not seem to be useful perfomancewise?
if dist.simd_lt(target_dist).any() {
// NOTE: only works for the point-point case.
let p1 = p2 - n1 * dist;
let err = ((dist - target_dist) * self.erp)
.simd_clamp(-self.max_linear_correction, SimdReal::zero());
let dp1 = p1.coords - pos1.translation.vector;
let dp2 = p2.coords - pos2.translation.vector;
let gcross1 = dp1.gcross(n1);
let gcross2 = -dp2.gcross(n1);
let ii_gcross1 = self.ii1.transform_vector(gcross1);
let ii_gcross2 = self.ii2.transform_vector(gcross2);
// Compute impulse.
let inv_r =
self.im1 + self.im2 + gcross1.gdot(ii_gcross1) + gcross2.gdot(ii_gcross2);
let impulse = err / inv_r;
// Apply impulse.
pos1.translation = Translation::from(n1 * (impulse * self.im1)) * pos1.translation;
pos1.rotation = Rotation::new(ii_gcross1 * impulse) * pos1.rotation;
pos2.translation = Translation::from(n1 * (-impulse * self.im2)) * pos2.translation;
pos2.rotation = Rotation::new(ii_gcross2 * impulse) * pos2.rotation;
}
}
for ii in 0..SIMD_WIDTH {
positions[self.rb1[ii]] = pos1.extract(ii);
}
for ii in 0..SIMD_WIDTH {
positions[self.rb2[ii]] = pos2.extract(ii);
}
}
}
|