1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
use super::{AnyVelocityConstraint, DeltaVel};
use crate::dynamics::{IntegrationParameters, RigidBodySet};
use crate::geometry::{ContactManifold, ContactManifoldIndex};
use crate::math::{
AngVector, AngularInertia, Isometry, Point, SimdFloat, Vector, DIM, MAX_MANIFOLD_POINTS,
SIMD_WIDTH,
};
use crate::utils::{WAngularInertia, WBasis, WCross, WDot};
use num::Zero;
use simba::simd::{SimdPartialOrd, SimdValue};
#[derive(Copy, Clone, Debug)]
pub(crate) struct WVelocityConstraintElementPart {
pub gcross1: AngVector<SimdFloat>,
pub gcross2: AngVector<SimdFloat>,
pub rhs: SimdFloat,
pub impulse: SimdFloat,
pub r: SimdFloat,
}
impl WVelocityConstraintElementPart {
pub fn zero() -> Self {
Self {
gcross1: AngVector::zero(),
gcross2: AngVector::zero(),
rhs: SimdFloat::zero(),
impulse: SimdFloat::zero(),
r: SimdFloat::zero(),
}
}
}
#[derive(Copy, Clone, Debug)]
pub(crate) struct WVelocityConstraintElement {
pub normal_part: WVelocityConstraintElementPart,
pub tangent_parts: [WVelocityConstraintElementPart; DIM - 1],
}
impl WVelocityConstraintElement {
pub fn zero() -> Self {
Self {
normal_part: WVelocityConstraintElementPart::zero(),
tangent_parts: [WVelocityConstraintElementPart::zero(); DIM - 1],
}
}
}
#[derive(Copy, Clone, Debug)]
pub(crate) struct WVelocityConstraint {
pub dir1: Vector<SimdFloat>, // Non-penetration force direction for the first body.
pub elements: [WVelocityConstraintElement; MAX_MANIFOLD_POINTS],
pub num_contacts: u8,
pub im1: SimdFloat,
pub im2: SimdFloat,
pub limit: SimdFloat,
pub mj_lambda1: [usize; SIMD_WIDTH],
pub mj_lambda2: [usize; SIMD_WIDTH],
pub manifold_id: [ContactManifoldIndex; SIMD_WIDTH],
pub manifold_contact_id: usize,
}
impl WVelocityConstraint {
pub fn generate(
params: &IntegrationParameters,
manifold_id: [ContactManifoldIndex; SIMD_WIDTH],
manifolds: [&ContactManifold; SIMD_WIDTH],
bodies: &RigidBodySet,
out_constraints: &mut Vec<AnyVelocityConstraint>,
push: bool,
) {
let inv_dt = SimdFloat::splat(params.inv_dt());
let rbs1 = array![|ii| &bodies[manifolds[ii].body_pair.body1]; SIMD_WIDTH];
let rbs2 = array![|ii| &bodies[manifolds[ii].body_pair.body2]; SIMD_WIDTH];
let delta1 = Isometry::from(array![|ii| manifolds[ii].delta1; SIMD_WIDTH]);
let delta2 = Isometry::from(array![|ii| manifolds[ii].delta2; SIMD_WIDTH]);
let im1 = SimdFloat::from(array![|ii| rbs1[ii].mass_properties.inv_mass; SIMD_WIDTH]);
let ii1: AngularInertia<SimdFloat> =
AngularInertia::from(array![|ii| rbs1[ii].world_inv_inertia_sqrt; SIMD_WIDTH]);
let linvel1 = Vector::from(array![|ii| rbs1[ii].linvel; SIMD_WIDTH]);
let angvel1 = AngVector::<SimdFloat>::from(array![|ii| rbs1[ii].angvel; SIMD_WIDTH]);
let pos1 = Isometry::from(array![|ii| rbs1[ii].position; SIMD_WIDTH]);
let world_com1 = Point::from(array![|ii| rbs1[ii].world_com; SIMD_WIDTH]);
let im2 = SimdFloat::from(array![|ii| rbs2[ii].mass_properties.inv_mass; SIMD_WIDTH]);
let ii2: AngularInertia<SimdFloat> =
AngularInertia::from(array![|ii| rbs2[ii].world_inv_inertia_sqrt; SIMD_WIDTH]);
let linvel2 = Vector::from(array![|ii| rbs2[ii].linvel; SIMD_WIDTH]);
let angvel2 = AngVector::<SimdFloat>::from(array![|ii| rbs2[ii].angvel; SIMD_WIDTH]);
let pos2 = Isometry::from(array![|ii| rbs2[ii].position; SIMD_WIDTH]);
let world_com2 = Point::from(array![|ii| rbs2[ii].world_com; SIMD_WIDTH]);
let coll_pos1 = pos1 * delta1;
let coll_pos2 = pos2 * delta2;
let force_dir1 = coll_pos1 * -Vector::from(array![|ii| manifolds[ii].local_n1; SIMD_WIDTH]);
let mj_lambda1 = array![|ii| rbs1[ii].active_set_offset; SIMD_WIDTH];
let mj_lambda2 = array![|ii| rbs2[ii].active_set_offset; SIMD_WIDTH];
let friction = SimdFloat::from(array![|ii| manifolds[ii].friction; SIMD_WIDTH]);
let warmstart_multiplier =
SimdFloat::from(array![|ii| manifolds[ii].warmstart_multiplier; SIMD_WIDTH]);
let warmstart_coeff = warmstart_multiplier * SimdFloat::splat(params.warmstart_coeff);
for l in (0..manifolds[0].num_active_contacts()).step_by(MAX_MANIFOLD_POINTS) {
let manifold_points = array![|ii| &manifolds[ii].active_contacts()[l..]; SIMD_WIDTH];
let num_points = manifold_points[0].len().min(MAX_MANIFOLD_POINTS);
let mut constraint = WVelocityConstraint {
dir1: force_dir1,
elements: [WVelocityConstraintElement::zero(); MAX_MANIFOLD_POINTS],
im1,
im2,
limit: friction,
mj_lambda1,
mj_lambda2,
manifold_id,
manifold_contact_id: l,
num_contacts: num_points as u8,
};
for k in 0..num_points {
// FIXME: can we avoid the multiplications by coll_pos1/coll_pos2 here?
// By working as much as possible in local-space.
let p1 = coll_pos1
* Point::from(array![|ii| manifold_points[ii][k].local_p1; SIMD_WIDTH]);
let p2 = coll_pos2
* Point::from(array![|ii| manifold_points[ii][k].local_p2; SIMD_WIDTH]);
let dist = SimdFloat::from(array![|ii| manifold_points[ii][k].dist; SIMD_WIDTH]);
let impulse =
SimdFloat::from(array![|ii| manifold_points[ii][k].impulse; SIMD_WIDTH]);
let dp1 = p1 - world_com1;
let dp2 = p2 - world_com2;
let vel1 = linvel1 + angvel1.gcross(dp1);
let vel2 = linvel2 + angvel2.gcross(dp2);
// Normal part.
{
let gcross1 = ii1.transform_vector(dp1.gcross(force_dir1));
let gcross2 = ii2.transform_vector(dp2.gcross(-force_dir1));
let r = SimdFloat::splat(1.0)
/ (im1 + im2 + gcross1.gdot(gcross1) + gcross2.gdot(gcross2));
let rhs =
(vel1 - vel2).dot(&force_dir1) + dist.simd_max(SimdFloat::zero()) * inv_dt;
constraint.elements[k].normal_part = WVelocityConstraintElementPart {
gcross1,
gcross2,
rhs,
impulse: impulse * warmstart_coeff,
r,
};
}
// tangent parts.
let tangents1 =
|