aboutsummaryrefslogtreecommitdiff
path: root/src/dynamics/solver/velocity_ground_constraint.rs
blob: d9229ff423f507b8f138b374f719576ae382890c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
use super::{AnyVelocityConstraint, DeltaVel};
use crate::math::{AngVector, Vector, DIM, MAX_MANIFOLD_POINTS};
use crate::utils::{WAngularInertia, WBasis, WCross, WDot};

use crate::dynamics::{IntegrationParameters, RigidBodySet};
use crate::geometry::{ContactManifold, ContactManifoldIndex};
use simba::simd::SimdPartialOrd;

#[derive(Copy, Clone, Debug)]
pub(crate) struct VelocityGroundConstraintElementPart {
    pub gcross2: AngVector<f32>,
    pub rhs: f32,
    pub impulse: f32,
    pub r: f32,
}

#[cfg(not(target_arch = "wasm32"))]
impl VelocityGroundConstraintElementPart {
    fn zero() -> Self {
        Self {
            gcross2: na::zero(),
            rhs: 0.0,
            impulse: 0.0,
            r: 0.0,
        }
    }
}

#[derive(Copy, Clone, Debug)]
pub(crate) struct VelocityGroundConstraintElement {
    pub normal_part: VelocityGroundConstraintElementPart,
    pub tangent_part: [VelocityGroundConstraintElementPart; DIM - 1],
}

#[cfg(not(target_arch = "wasm32"))]
impl VelocityGroundConstraintElement {
    pub fn zero() -> Self {
        Self {
            normal_part: VelocityGroundConstraintElementPart::zero(),
            tangent_part: [VelocityGroundConstraintElementPart::zero(); DIM - 1],
        }
    }
}

#[derive(Copy, Clone, Debug)]
pub(crate) struct VelocityGroundConstraint {
    pub dir1: Vector<f32>, // Non-penetration force direction for the first body.
    pub im2: f32,
    pub limit: f32,
    pub mj_lambda2: usize,
    pub manifold_id: ContactManifoldIndex,
    pub manifold_contact_id: usize,
    pub num_contacts: u8,
    pub elements: [VelocityGroundConstraintElement; MAX_MANIFOLD_POINTS],
}

impl VelocityGroundConstraint {
    pub fn generate(
        params: &IntegrationParameters,
        manifold_id: ContactManifoldIndex,
        manifold: &ContactManifold,
        bodies: &RigidBodySet,
        out_constraints: &mut Vec<AnyVelocityConstraint>,
        push: bool,
    ) {
        let mut rb1 = &bodies[manifold.body_pair.body1];
        let mut rb2 = &bodies[manifold.body_pair.body2];
        let flipped = !rb2.is_dynamic();
        let force_dir1;
        let coll_pos1;
        let coll_pos2;

        if flipped {
            coll_pos1 = rb2.position * manifold.delta2;
            coll_pos2 = rb1.position * manifold.delta1;
            force_dir1 = coll_pos1 * (-manifold.local_n2);
            std::mem::swap(&mut rb1, &mut rb2);
        } else {
            coll_pos1 = rb1.position * manifold.delta1;
            coll_pos2 = rb2.position * manifold.delta2;
            force_dir1 = coll_pos1 * (-manifold.local_n1);
        }

        let mj_lambda2 = rb2.active_set_offset;
        let warmstart_coeff = manifold.warmstart_multiplier * params.warmstart_coeff;

        for (l, manifold_points) in manifold
            .active_contacts()
            .chunks(MAX_MANIFOLD_POINTS)
            .enumerate()
        {
            #[cfg(not(target_arch = "wasm32"))]
            let mut constraint = VelocityGroundConstraint {
                dir1: force_dir1,
                elements: [VelocityGroundConstraintElement::zero(); MAX_MANIFOLD_POINTS],
                im2: rb2.mass_properties.inv_mass,
                limit: manifold.friction,
                mj_lambda2,
                manifold_id,
                manifold_contact_id: l * MAX_MANIFOLD_POINTS,
                num_contacts: manifold_points.len() as u8,
            };

            // TODO: this is a WIP optimization for WASM platforms.
            // For some reasons, the compiler does not inline the `Vec::push` method
            // in this method. This generates two memset and one memcpy which are both very
            // expansive.
            // This would likely be solved by some kind of "placement-push" (like emplace in C++).
            // In the mean time, a workaround is to "push" using `.resize_with` and `::uninit()` to
            // avoid spurious copying.
            // Is this optimization beneficial when targeting non-WASM platforms?
            //
            // NOTE: joints have the same problem, but it is not easy to refactor the code that way
            // for the moment.
            #[cfg(target_arch = "wasm32")]
            let constraint = if push {
                let new_len = out_constraints.len() + 1;
                unsafe {
                    out_constraints.resize_with(new_len, || {
                        AnyVelocityConstraint::NongroupedGround(
                            std::mem::MaybeUninit::uninit().assume_init(),
                        )
                    });
                }
                out_constraints
                    .last_mut()
                    .unwrap()
                    .as_nongrouped_ground_mut()
                    .unwrap()
            } else {
                unreachable!(); // We don't have parallelization on WASM yet, so this is unreachable.
            };

            #[cfg(target_arch = "wasm32")]
            {
                constraint.dir1 = force_dir1;
                constraint.im2 = rb2.mass_properties.inv_mass;
                constraint.limit = manifold.friction;
                constraint.mj_lambda2 = mj_lambda2;
                constraint.manifold_id = manifold_id;
                constraint.manifold_contact_id = l * MAX_MANIFOLD_POINTS;
                constraint.num_contacts = manifold_points.len() as u8;
            }

            for k in 0..manifold_points.len() {
                let manifold_point = &manifold_points[k];
                let (p1, p2) = if flipped {
                    // NOTE: we already swapped rb1 and rb2
                    // so we multiply by coll_pos1/coll_pos2.
                    (
                        coll_pos1 * manifold_point.local_p2,
                        coll_pos2 * manifold_point.local_p1,
                    )
                } else {
                    (
                        coll_pos1 * manifold_point.local_p1,
                        coll_pos2 * manifold_point.local_p2,
                    )
                };
                let dp2 = p2 - rb2.world_com;
                let dp1 = p1 - rb1.world_com;
                let vel1 = rb1.linvel + rb1.angvel.gcross(dp1);
                let vel2 = rb2.linvel + rb2.angvel.gcross(dp2);

                // Normal part.
                {
                    let gcross2 = rb2
                        .world_inv_inertia_sqrt
                        .transform_vector(dp2.gcross(-force_dir1));

                    let r = 1.0 / (rb2.mass_properties.inv_mass + gcross2.gdot(gcross2));
                    let rhs = -vel2.dot(&force_dir1)
                        + vel1.dot(&force_dir1)
                        + manifold_point.dist.max(0.0) * params.inv_dt();
                    let impulse = manifold_points[k].impulse * warmstart_coeff;

                    constraint.elements[k].normal_part = VelocityGroundConstraintElementPart {
                        gcross2,
                        rhs,
                        impulse,
                        r,
                    };
                }

                // Tangent parts.
                {
                    let tangents1 = force_dir1.orthonormal_basis();

                    for j in 0..DIM - 1 {
                        let gcross2 = rb2
                            .world_inv_inertia_sqrt
                            .transform_vector(dp2.gcross(-tangents1[j]));
                        let r = 1.0 / (rb2.mass_properties.inv_mass + gcross2.gdot(gcross2));
                        let rhs = -vel2.dot(&tangents1[j]) + vel1.dot(&tangents1[j]);
                        #[cfg(feature = "dim2")]
                        let impulse = manifold_points[k].tangent_impulse * warmstart_coeff;
                        #[cfg(feature = "dim3")]
                        let impulse = manifold_points[k].tangent_impulse[j] * warmstart_coeff;

                        constraint.elements[k].tangent_part[j] =
                            VelocityGroundConstraintElementPart {
                                gcross2,
                                rhs,
                                impulse,
                                r,
                            };
                    }
                }
            }

            #[cfg(not(target_arch = "wasm32"))]
            if push {
                out_constraints.push(AnyVelocityConstraint::NongroupedGround(constraint));
            } else {
                out_constraints[manifold.constraint_index + l] =
                    AnyVelocityConstraint::NongroupedGround(constraint);
            }
        }
    }

    pub fn warmstart(&self, mj_lambdas: &mut [DeltaVel<f32>]) {
        let mut mj_lambda2 = DeltaVel::zero();
        let tangents1 = self.dir1.orthonormal_basis();

        for i in 0..self.num_contacts as usize {
            let elt = &self.elements[i].normal_part;
            mj_lambda2.linear += self.dir1 * (-self.im2 * elt.impulse);
            mj_lambda2