aboutsummaryrefslogtreecommitdiff
path: root/src/geometry/polygonal_feature_map.rs
diff options
context:
space:
mode:
authorSébastien Crozet <developer@crozet.re>2020-10-27 09:57:26 +0100
committerGitHub <noreply@github.com>2020-10-27 09:57:26 +0100
commit93153f5d93358e83c8a4ca2b7195bf9aae95ffb9 (patch)
tree16ccb1aedc30d5c09d59e6ee5c7faa987e67b202 /src/geometry/polygonal_feature_map.rs
parentf8acf6a5e9d3ba537dac6502b0e0541236b418c5 (diff)
parentffbc3c02c7d328d5c48a3efb84d35f5911f1880b (diff)
downloadrapier-93153f5d93358e83c8a4ca2b7195bf9aae95ffb9.tar.gz
rapier-93153f5d93358e83c8a4ca2b7195bf9aae95ffb9.tar.bz2
rapier-93153f5d93358e83c8a4ca2b7195bf9aae95ffb9.zip
Merge pull request #41 from dimforge/cylinder
Add cylinder and cone support + use a trait-object for shapes.
Diffstat (limited to 'src/geometry/polygonal_feature_map.rs')
-rw-r--r--src/geometry/polygonal_feature_map.rs132
1 files changed, 132 insertions, 0 deletions
diff --git a/src/geometry/polygonal_feature_map.rs b/src/geometry/polygonal_feature_map.rs
new file mode 100644
index 0000000..2a8fc8d
--- /dev/null
+++ b/src/geometry/polygonal_feature_map.rs
@@ -0,0 +1,132 @@
+use crate::geometry::PolyhedronFace;
+use crate::geometry::{cuboid, Cone, Cuboid, Cylinder, Segment, Triangle};
+use crate::math::{Point, Vector};
+use approx::AbsDiffEq;
+use na::{Unit, Vector2};
+use ncollide::shape::SupportMap;
+
+/// Trait implemented by convex shapes with features with polyhedral approximations.
+pub trait PolygonalFeatureMap: SupportMap<f32> {
+ fn local_support_feature(&self, dir: &Unit<Vector<f32>>, out_feature: &mut PolyhedronFace);
+}
+
+impl PolygonalFeatureMap for Segment {
+ fn local_support_feature(&self, _: &Unit<Vector<f32>>, out_feature: &mut PolyhedronFace) {
+ *out_feature = PolyhedronFace::from(*self);
+ }
+}
+
+impl PolygonalFeatureMap for Triangle {
+ fn local_support_feature(&self, _: &Unit<Vector<f32>>, out_feature: &mut PolyhedronFace) {
+ *out_feature = PolyhedronFace::from(*self);
+ }
+}
+
+impl PolygonalFeatureMap for Cuboid {
+ fn local_support_feature(&self, dir: &Unit<Vector<f32>>, out_feature: &mut PolyhedronFace) {
+ let face = cuboid::support_face(self, **dir);
+ *out_feature = PolyhedronFace::from(face);
+ }
+}
+
+impl PolygonalFeatureMap for Cylinder {
+ fn local_support_feature(&self, dir: &Unit<Vector<f32>>, out_features: &mut PolyhedronFace) {
+ // About feature ids.
+ // At all times, we consider our cylinder to be approximated as follows:
+ // - The curved part is approximated by a single segment.
+ // - Each flat cap of the cylinder is approximated by a square.
+ // - The curved-part segment has a feature ID of 0, and its endpoint with negative
+ // `y` coordinate has an ID of 1.
+ // - The bottom cap has its vertices with feature ID of 1,3,5,7 (in counter-clockwise order
+ // when looking at the cap with an eye looking towards +y).
+ // - The bottom cap has its four edge feature IDs of 2,4,6,8, in counter-clockwise order.
+ // - The bottom cap has its face feature ID of 9.
+ // - The feature IDs of the top cap are the same as the bottom cap to which we add 10.
+ // So its vertices have IDs 11,13,15,17, its edges 12,14,16,18, and its face 19.
+ // - Note that at all times, one of each cap's vertices are the same as the curved-part
+ // segment endpoints.
+ let dir2 = Vector2::new(dir.x, dir.z)
+ .try_normalize(f32::default_epsilon())
+ .unwrap_or(Vector2::x());
+
+ if dir.y.abs() < 0.5 {
+ // We return a segment lying on the cylinder's curved part.
+ out_features.vertices[0] = Point::new(
+ dir2.x * self.radius,
+ -self.half_height,
+ dir2.y * self.radius,
+ );
+ out_features.vertices[1] =
+ Point::new(dir2.x * self.radius, self.half_height, dir2.y * self.radius);
+ out_features.eids = [0, 0, 0, 0];
+ out_features.fid = 0;
+ out_features.num_vertices = 2;
+ out_features.vids = [1, 11, 11, 11];
+ } else {
+ // We return a square approximation of the cylinder cap.
+ let y = self.half_height.copysign(dir.y);
+ out_features.vertices[0] = Point::new(dir2.x * self.radius, y, dir2.y * self.radius);
+ out_features.vertices[1] = Point::new(-dir2.y * self.radius, y, dir2.x * self.radius);
+ out_features.vertices[2] = Point::new(-dir2.x * self.radius, y, -dir2.y * self.radius);
+ out_features.vertices[3] = Point::new(dir2.y * self.radius, y, -dir2.x * self.radius);
+
+ if dir.y < 0.0 {
+ out_features.eids = [2, 4, 6, 8];
+ out_features.fid = 9;
+ out_features.num_vertices = 4;
+ out_features.vids = [1, 3, 5, 7];
+ } else {
+ out_features.eids = [12, 14, 16, 18];
+ out_features.fid = 19;
+ out_features.num_vertices = 4;
+ out_features.vids = [11, 13, 15, 17];
+ }
+ }
+ }
+}
+
+impl PolygonalFeatureMap for Cone {
+ fn local_support_feature(&self, dir: &Unit<Vector<f32>>, out_features: &mut PolyhedronFace) {
+ // About feature ids. It is very similar to the feature ids of cylinders.
+ // At all times, we consider our cone to be approximated as follows:
+ // - The curved part is approximated by a single segment.
+ // - The flat cap of the cone is approximated by a square.
+ // - The curved-part segment has a feature ID of 0, and its endpoint with negative
+ // `y` coordinate has an ID of 1.
+ // - The bottom cap has its vertices with feature ID of 1,3,5,7 (in counter-clockwise order
+ // when looking at the cap with an eye looking towards +y).
+ // - The bottom cap has its four edge feature IDs of 2,4,6,8, in counter-clockwise order.
+ // - The bottom cap has its face feature ID of 9.
+ // - Note that at all times, one of the cap's vertices are the same as the curved-part
+ // segment endpoints.
+ let dir2 = Vector2::new(dir.x, dir.z)
+ .try_normalize(f32::default_epsilon())
+ .unwrap_or(Vector2::x());
+
+ if dir.y > 0.0 {
+ // We return a segment lying on the cone's curved part.
+ out_features.vertices[0] = Point::new(
+ dir2.x * self.radius,
+ -self.half_height,
+ dir2.y * self.radius,
+ );
+ out_features.vertices[1] = Point::new(0.0, self.half_height, 0.0);
+ out_features.eids = [0, 0, 0, 0];
+ out_features.fid = 0;
+ out_features.num_vertices = 2;
+ out_features.vids = [1, 11, 11, 11];
+ } else {
+ // We return a square approximation of the cone cap.
+ let y = -self.half_height;
+ out_features.vertices[0] = Point::new(dir2.x * self.radius, y, dir2.y * self.radius);
+ out_features.vertices[1] = Point::new(-dir2.y * self.radius, y, dir2.x * self.radius);
+ out_features.vertices[2] = Point::new(-dir2.x * self.radius, y, -dir2.y * self.radius);
+ out_features.vertices[3] = Point::new(dir2.y * self.radius, y, -dir2.x * self.radius);
+
+ out_features.eids = [2, 4, 6, 8];
+ out_features.fid = 9;
+ out_features.num_vertices = 4;
+ out_features.vids = [1, 3, 5, 7];
+ }
+ }
+}