aboutsummaryrefslogtreecommitdiff
path: root/src/utils.rs
diff options
context:
space:
mode:
authorCrozet Sébastien <developer@crozet.re>2020-12-14 15:51:43 +0100
committerCrozet Sébastien <developer@crozet.re>2020-12-29 11:31:00 +0100
commitcc6d1b973002b4d366bc81ec6bf9e8240ad7b404 (patch)
tree66827195ef82f22e545fc9ee4e0bade9baa8031b /src/utils.rs
parent9bf1321f8f1d2e116f44c2461a53f302c4ef4171 (diff)
downloadrapier-cc6d1b973002b4d366bc81ec6bf9e8240ad7b404.tar.gz
rapier-cc6d1b973002b4d366bc81ec6bf9e8240ad7b404.tar.bz2
rapier-cc6d1b973002b4d366bc81ec6bf9e8240ad7b404.zip
Outsource the Shape trait, wquadtree, and shape types.
Diffstat (limited to 'src/utils.rs')
-rw-r--r--src/utils.rs632
1 files changed, 53 insertions, 579 deletions
diff --git a/src/utils.rs b/src/utils.rs
index 6557b74..4089631 100644
--- a/src/utils.rs
+++ b/src/utils.rs
@@ -7,7 +7,7 @@ use simba::simd::SimdValue;
use std::ops::{Add, Mul};
use {
- crate::simd::{SimdBool, SimdFloat},
+ crate::math::{AngularInertia, SimdBool, SimdReal},
na::SimdPartialOrd,
num::One,
};
@@ -32,16 +32,6 @@ pub(crate) fn inv(val: f32) -> f32 {
}
}
-/// Conditionally swaps each lanes of `a` with those of `b`.
-///
-/// For each `i in [0..SIMD_WIDTH[`, if `do_swap.extract(i)` is `true` then
-/// `a.extract(i)` is swapped with `b.extract(i)`.
-pub fn simd_swap(do_swap: SimdBool, a: &mut SimdFloat, b: &mut SimdFloat) {
- let _a = *a;
- *a = b.select(do_swap, *a);
- *b = _a.select(do_swap, *b);
-}
-
/// Trait to copy the sign of each component of one scalar/vector/matrix to another.
pub trait WSign<Rhs>: Sized {
// See SIMD implementations of copy_sign there: https://stackoverflow.com/a/57872652
@@ -88,8 +78,8 @@ impl<N: Scalar + Copy + WSign<N>> WSign<Vector3<N>> for Vector3<N> {
}
}
-impl WSign<SimdFloat> for SimdFloat {
- fn copy_sign_to(self, to: SimdFloat) -> SimdFloat {
+impl WSign<SimdReal> for SimdReal {
+ fn copy_sign_to(self, to: SimdReal) -> SimdReal {
to.simd_copysign(self)
}
}
@@ -112,7 +102,7 @@ impl WComponent for f32 {
}
}
-impl WComponent for SimdFloat {
+impl WComponent for SimdReal {
type Element = f32;
fn min_component(self) -> Self::Element {
@@ -328,22 +318,22 @@ impl WDot<f32> for f32 {
}
}
-impl WCrossMatrix for Vector3<SimdFloat> {
- type CrossMat = Matrix3<SimdFloat>;
+impl WCrossMatrix for Vector3<SimdReal> {
+ type CrossMat = Matrix3<SimdReal>;
#[inline]
#[rustfmt::skip]
fn gcross_matrix(self) -> Self::CrossMat {
Matrix3::new(
- SimdFloat::zero(), -self.z, self.y,
- self.z, SimdFloat::zero(), -self.x,
- -self.y, self.x, SimdFloat::zero(),
+ SimdReal::zero(), -self.z, self.y,
+ self.z, SimdReal::zero(), -self.x,
+ -self.y, self.x, SimdReal::zero(),
)
}
}
-impl WCrossMatrix for Vector2<SimdFloat> {
- type CrossMat = Vector2<SimdFloat>;
+impl WCrossMatrix for Vector2<SimdReal> {
+ type CrossMat = Vector2<SimdReal>;
#[inline]
fn gcross_matrix(self) -> Self::CrossMat {
@@ -351,24 +341,24 @@ impl WCrossMatrix for Vector2<SimdFloat> {
}
}
-impl WCross<Vector3<SimdFloat>> for Vector3<SimdFloat> {
- type Result = Vector3<SimdFloat>;
+impl WCross<Vector3<SimdReal>> for Vector3<SimdReal> {
+ type Result = Vector3<SimdReal>;
fn gcross(&self, rhs: Self) -> Self::Result {
self.cross(&rhs)
}
}
-impl WCross<Vector2<SimdFloat>> for SimdFloat {
- type Result = Vector2<SimdFloat>;
+impl WCross<Vector2<SimdReal>> for SimdReal {
+ type Result = Vector2<SimdReal>;
- fn gcross(&self, rhs: Vector2<SimdFloat>) -> Self::Result {
+ fn gcross(&self, rhs: Vector2<SimdReal>) -> Self::Result {
Vector2::new(-rhs.y * *self, rhs.x * *self)
}
}
-impl WCross<Vector2<SimdFloat>> for Vector2<SimdFloat> {
- type Result = SimdFloat;
+impl WCross<Vector2<SimdReal>> for Vector2<SimdReal> {
+ type Result = SimdReal;
fn gcross(&self, rhs: Self) -> Self::Result {
let yx = Vector2::new(rhs.y, rhs.x);
@@ -377,26 +367,26 @@ impl WCross<Vector2<SimdFloat>> for Vector2<SimdFloat> {
}
}
-impl WDot<Vector3<SimdFloat>> for Vector3<SimdFloat> {
- type Result = SimdFloat;
+impl WDot<Vector3<SimdReal>> for Vector3<SimdReal> {
+ type Result = SimdReal;
- fn gdot(&self, rhs: Vector3<SimdFloat>) -> Self::Result {
+ fn gdot(&self, rhs: Vector3<SimdReal>) -> Self::Result {
self.x * rhs.x + self.y * rhs.y + self.z * rhs.z
}
}
-impl WDot<Vector2<SimdFloat>> for Vector2<SimdFloat> {
- type Result = SimdFloat;
+impl WDot<Vector2<SimdReal>> for Vector2<SimdReal> {
+ type Result = SimdReal;
- fn gdot(&self, rhs: Vector2<SimdFloat>) -> Self::Result {
+ fn gdot(&self, rhs: Vector2<SimdReal>) -> Self::Result {
self.x * rhs.x + self.y * rhs.y
}
}
-impl WDot<SimdFloat> for SimdFloat {
- type Result = SimdFloat;
+impl WDot<SimdReal> for SimdReal {
+ type Result = SimdReal;
- fn gdot(&self, rhs: SimdFloat) -> Self::Result {
+ fn gdot(&self, rhs: SimdReal) -> Self::Result {
*self * rhs
}
}
@@ -446,26 +436,26 @@ impl WAngularInertia<f32> for f32 {
}
}
-impl WAngularInertia<SimdFloat> for SimdFloat {
- type AngVector = SimdFloat;
- type LinVector = Vector2<SimdFloat>;
- type AngMatrix = SimdFloat;
+impl WAngularInertia<SimdReal> for SimdReal {
+ type AngVector = SimdReal;
+ type LinVector = Vector2<SimdReal>;
+ type AngMatrix = SimdReal;
fn inverse(&self) -> Self {
- let zero = <SimdFloat>::zero();
+ let zero = <SimdReal>::zero();
let is_zero = self.simd_eq(zero);
- (<SimdFloat>::one() / *self).select(is_zero, zero)
+ (<SimdReal>::one() / *self).select(is_zero, zero)
}
- fn transform_lin_vector(&self, pt: Vector2<SimdFloat>) -> Vector2<SimdFloat> {
+ fn transform_lin_vector(&self, pt: Vector2<SimdReal>) -> Vector2<SimdReal> {
pt * *self
}
- fn transform_vector(&self, pt: SimdFloat) -> SimdFloat {
+ fn transform_vector(&self, pt: SimdReal) -> SimdReal {
*self * pt
}
- fn squared(&self) -> SimdFloat {
+ fn squared(&self) -> SimdReal {
*self * *self
}
@@ -478,325 +468,8 @@ impl WAngularInertia<SimdFloat> for SimdFloat {
}
}
-/// A 2x2 symmetric-definite-positive matrix.
-#[derive(Copy, Clone, Debug, PartialEq)]
-#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
-pub struct SdpMatrix2<N> {
- /// The component at the first row and first column of this matrix.
- pub m11: N,
- /// The component at the first row and second column of this matrix.
- pub m12: N,
- /// The component at the second row and second column of this matrix.
- pub m22: N,
-}
-
-impl<N: SimdRealField> SdpMatrix2<N> {
- /// A new SDP 2x2 matrix with the given components.
- ///
- /// Because the matrix is symmetric, only the lower off-diagonal component is required.
- pub fn new(m11: N, m12: N, m22: N) -> Self {
- Self { m11, m12, m22 }
- }
-
- /// Build an `SdpMatrix2` structure from a plain matrix, assuming it is SDP.
- ///
- /// No check is performed to ensure `mat` is actually SDP.
- pub fn from_sdp_matrix(mat: na::Matrix2<N>) -> Self {
- Self {
- m11: mat.m11,
- m12: mat.m12,
- m22: mat.m22,
- }
- }
-
- /// Create a new SDP matrix filled with zeros.
- pub fn zero() -> Self {
- Self {
- m11: N::zero(),
- m12: N::zero(),
- m22: N::zero(),
- }
- }
-
- /// Create a new SDP matrix with its diagonal filled with `val`, and its off-diagonal elements set to zero.
- pub fn diagonal(val: N) -> Self {
- Self {
- m11: val,
- m12: N::zero(),
- m22: val,
- }
- }
-
- /// Adds `val` to the diagonal components of `self`.
- pub fn add_diagonal(&mut self, elt: N) -> Self {
- Self {
- m11: self.m11 + elt,
- m12: self.m12,
- m22: self.m22 + elt,
- }
- }
-
- /// Compute the inverse of this SDP matrix without performing any inversibility check.
- pub fn inverse_unchecked(&self) -> Self {
- let determinant = self.m11 * self.m22 - self.m12 * self.m12;
- let m11 = self.m22 / determinant;
- let m12 = -self.m12 / determinant;
- let m22 = self.m11 / determinant;
-
- Self { m11, m12, m22 }
- }
-
- /// Convert this SDP matrix to a regular matrix representation.
- pub fn into_matrix(self) -> Matrix2<N> {
- Matrix2::new(self.m11, self.m12, self.m12, self.m22)
- }
-}
-
-impl<N: SimdRealField> Add<SdpMatrix2<N>> for SdpMatrix2<N> {
- type Output = Self;
-
- fn add(self, rhs: SdpMatrix2<N>) -> Self {
- Self::new(self.m11 + rhs.m11, self.m12 + rhs.m12, self.m22 + rhs.m22)
- }
-}
-
-impl<N: SimdRealField> Mul<Vector2<N>> for SdpMatrix2<N> {
- type Output = Vector2<N>;
-
- fn mul(self, rhs: Vector2<N>) -> Self::Output {
- Vector2::new(
- self.m11 * rhs.x + self.m12 * rhs.y,
- self.m12 * rhs.x + self.m22 * rhs.y,
- )
- }
-}
-
-/// A 3x3 symmetric-definite-positive matrix.
-#[derive(Copy, Clone, Debug, PartialEq)]
-#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
-pub struct SdpMatrix3<N> {
- /// The component at the first row and first column of this matrix.
- pub m11: N,
- /// The component at the first row and second column of this matrix.
- pub m12: N,
- /// The component at the first row and third column of this matrix.
- pub m13: N,
- /// The component at the second row and second column of this matrix.
- pub m22: N,
- /// The component at the second row and third column of this matrix.
- pub m23: N,
- /// The component at the third row and third column of this matrix.
- pub m33: N,
-}
-
-impl<N: SimdRealField> SdpMatrix3<N> {
- /// A new SDP 3x3 matrix with the given components.
- ///
- /// Because the matrix is symmetric, only the lower off-diagonal components is required.
- pub fn new(m11: N, m12: N, m13: N, m22: N, m23: N, m33: N) -> Self {
- Self {
- m11,
- m12,
- m13,
- m22,
- m23,
- m33,
- }
- }
-
- /// Build an `SdpMatrix3` structure from a plain matrix, assuming it is SDP.
- ///
- /// No check is performed to ensure `mat` is actually SDP.
- pub fn from_sdp_matrix(mat: na::Matrix3<N>) -> Self {
- Self {
- m11: mat.m11,
- m12: mat.m12,
- m13: mat.m13,
- m22: mat.m22,
- m23: mat.m23,
- m33: mat.m33,
- }
- }
-
- /// Create a new SDP matrix filled with zeros.
- pub fn zero() -> Self {
- Self {
- m11: N::zero(),
- m12: N::zero(),
- m13: N::zero(),
- m22: N::zero(),
- m23: N::zero(),
- m33: N::zero(),
- }
- }
-
- /// Create a new SDP matrix with its diagonal filled with `val`, and its off-diagonal elements set to zero.
- pub fn diagonal(val: N) -> Self {
- Self {
- m11: val,
- m12: N::zero(),
- m13: N::zero(),
- m22: val,
- m23: N::zero(),
- m33: val,
- }
- }
-
- /// Are all components of this matrix equal to zero?
- pub fn is_zero(&self) -> bool {
- self.m11.is_zero()
- && self.m12.is_zero()
- && self.m13.is_zero()
- && self.m22.is_zero()
- && self.m23.is_zero()
- && self.m33.is_zero()
- }
-
- /// Compute the inverse of this SDP matrix without performing any inversibility check.
- pub fn inverse_unchecked(&self) -> Self {
- let minor_m12_m23 = self.m22 * self.m33 - self.m23 * self.m23;
- let minor_m11_m23 = self.m12 * self.m33 - self.m13 * self.m23;
- let minor_m11_m22 = self.m12 * self.m23 - self.m13 * self.m22;
-
- let determinant =
- self.m11 * minor_m12_m23 - self.m12 * minor_m11_m23 + self.m13 * minor_m11_m22;
- let inv_det = N::one() / determinant;
-
- SdpMatrix3 {
- m11: minor_m12_m23 * inv_det,
- m12: -minor_m11_m23 * inv_det,
- m13: minor_m11_m22 * inv_det,
- m22: (self.m11 * self.m33 - self.m13 * self.m13) * inv_det,
- m23: (self.m13 * self.m12 - self.m23 * self.m11) * inv_det,
- m33: (self.m11 * self.m22 - self.m12 * self.m12) * inv_det,
- }
- }
-
- /// Compute the quadratic form `m.transpose() * self * m`.
- pub fn quadform3x2(&self, m: &Matrix3x2<N>) -> SdpMatrix2<N> {
- let x0 = self.m11 * m.m11 + self.m12 * m.m21 + self.m13 * m.m31;
- let y0 = self.m12 * m.m11 + self.m22 * m.m21 + self.m23 * m.m31;
- let z0 = self.m13 * m.m11 + self.m23 * m.m21 + self.m33 * m.m31;
-
- let x1 = self.m11 * m.m12 + self.m12 * m.m22 + self.m13 * m.m32;
- let y1 = self.m12 * m.m12 + self.m22 * m.m22 + self.m23 * m.m32;
- let z1 = self.m13 * m.m12 + self.m23 * m.m22 + self.m33 * m.m32;
-
- let m11 = m.m11 * x0 + m.m21 * y0 + m.m31 * z0;
- let m12 = m.m11 * x1 + m.m21 * y1 + m.m31 * z1;
- let m22 = m.m12 * x1 + m.m22 * y1 + m.m32 * z1;
-
- SdpMatrix2 { m11, m12, m22 }
- }
-
- /// Compute the quadratic form `m.transpose() * self * m`.
- pub fn quadform(&self, m: &Matrix3<N>) -> Self {
- let x0 = self.m11 * m.m11 + self.m12 * m.m21 + self.m13 * m.m31;
- let y0 = self.m12 * m.m11 + self.m22 * m.m21 + self.m23 * m.m31;
- let z0 = self.m13 * m.m11 + self.m23 * m.m21 + self.m33 * m.m31;
-
- let x1 = self.m11 * m.m12 + self.m12 * m.m22 + self.m13 * m.m32;
- let y1 = self.m12 * m.m12 + self.m22 * m.m22 + self.m23 * m.m32;
- let z1 = self.m13 * m.m12 + self.m23 * m.m22 + self.m33 * m.m32;
-
- let x2 = self.m11 * m.m13 + self.m12 * m.m23 + self.m13 * m.m33;
- let y2 = self.m12 * m.m13 + self.m22 * m.m23 + self.m23 * m.m33;
- let z2 = self.m13 * m.m13 + self.m23 * m.m23 + self.m33 * m.m33;
-
- let m11 = m.m11 * x0 + m.m21 * y0 + m.m31 * z0;
- let m12 = m.m11 * x1 + m.m21 * y1 + m.m31 * z1;
- let m13 = m.m11 * x2 + m.m21 * y2 + m.m31 * z2;
-
- let m22 = m.m12 * x1 + m.m22 * y1 + m.m32 * z1;
- let m23 = m.m12 * x2 + m.m22 * y2 + m.m32 * z2;
- let m33 = m.m13 * x2 + m.m23 * y2 + m.m33 * z2;
-
- Self {
- m11,
- m12,
- m13,
- m22,
- m23,
- m33,
- }
- }
-
- /// Adds `elt` to the diagonal components of `self`.
- pub fn add_diagonal(&self, elt: N) -> Self {
- Self {
- m11: self.m11 + elt,
- m12: self.m12,
- m13: self.m13,
- m22: self.m22 + elt,
- m23: self.m23,
- m33: self.m33 + elt,
- }
- }
-}
-
-impl<N: Add<N>> Add<SdpMatrix3<N>> for SdpMatrix3<N> {
- type Output = SdpMatrix3<N::Output>;
-
- fn add(self, rhs: SdpMatrix3<N>) -> Self::Output {
- SdpMatrix3 {
- m11: self.m11 + rhs.m11,
- m12: self.m12 + rhs.m12,
- m13: self.m13 + rhs.m13,
- m22: self.m22 + rhs.m22,
- m23: self.m23 + rhs.m23,
- m33: self.m33 + rhs.m33,
- }
- }
-}
-
-impl<N: SimdRealField> Mul<Vector3<N>> for SdpMatrix3<N> {
- type Output = Vector3<N>;
-
- fn mul(self, rhs: Vector3<N>) -> Self::Output {
- let x = self.m11 * rhs.x + self.m12 * rhs.y + self.m13 * rhs.z;
- let y = self.m12 * rhs.x + self.m22 * rhs.y + self.m23 * rhs.z;
- let z = self.m13 * rhs.x + self.m23 * rhs.y + self.m33 * rhs.z;
- Vector3::new(x, y, z)
- }
-}
-
-impl<N: SimdRealField> Mul<Matrix3<N>> for SdpMatrix3<N> {
- type Output = Matrix3<N>;
-
- fn mul(self, rhs: Matrix3<N>) -> Self::Output {
- let x0 = self.m11 * rhs.m11 + self.m12 * rhs.m21 + self.m13 * rhs.m31;
- let y0 = self.m12 * rhs.m11 + self.m22 * rhs.m21 + self.m23 * rhs.m31;
- let z0 = self.m13 * rhs.m11 + self.m23 * rhs.m21 + self.m33 * rhs.m31;
-
- let x1 = self.m11 * rhs.m12 + self.m12 * rhs.m22 + self.m13 * rhs.m32;
- let y1 = self.m12 * rhs.m12 + self.m22 * rhs.m22 + self.m23 * rhs.m32;
- let z1 = self.m13 * rhs.m12 + self.m23 * rhs.m22 + self.m33 * rhs.m32;
-
- let x2 = self.m11 * rhs.m13 + self.m12 * rhs.m23 + self.m13 * rhs.m33;
- let y2 = self.m12 * rhs.m13 + self.m22 * rhs.m23 + self.m23 * rhs.m33;
- let z2 = self.m13 * rhs.m13 + self.m23 * rhs.m23 + self.m33 * rhs.m33;
-
- Matrix3::new(x0, x1, x2, y0, y1, y2, z0, z1, z2)
- }
-}
-
-impl<N: SimdRealField> Mul<Matrix3x2<N>> for SdpMatrix3<N> {
- type Output = Matrix3x2<N>;
-
- fn mul(self, rhs: Matrix3x2<N>) -> Self::Output {
- let x0 = self.m11 * rhs.m11 + self.m12 * rhs.m21 + self.m13 * rhs.m31;
- let y0 = self.m12 * rhs.m11 + self.m22 * rhs.m21 + self.m23 * rhs.m31;
- let z0 = self.m13 * rhs.m11 + self.m23 * rhs.m21 + self.m33 * rhs.m31;
-
- let x1 = self.m11 * rhs.m12 + self.m12 * rhs.m22 + self.m13 * rhs.m32;
- let y1 = self.m12 * rhs.m12 + self.m22 * rhs.m22 + self.m23 * rhs.m32;
- let z1 = self.m13 * rhs.m12 + self.m23 * rhs.m22 + self.m33 * rhs.m32;
-
- Matrix3x2::new(x0, x1, y0, y1, z0, z1)
- }
-}
-
-impl WAngularInertia<f32> for SdpMatrix3<f32> {
+#[cfg(feature = "dim3")]
+impl WAngularInertia<f32> for AngularInertia<f32> {
type AngVector = Vector3<f32>;
type LinVector = Vector3<f32>;
type AngMatrix = Matrix3<f32>;
@@ -812,7 +485,7 @@ impl WAngularInertia<f32> for SdpMatrix3<f32> {
if determinant.is_zero() {
Self::zero()
} else {
- SdpMatrix3 {
+ AngularInertia {
m11: minor_m12_m23 / determinant,
m12: -minor_m11_m23 / determinant,
m13: minor_m11_m22 / determinant,
@@ -824,7 +497,7 @@ impl WAngularInertia<f32> for SdpMatrix3<f32> {
}
fn squared(&self) -> Self {
- SdpMatrix3 {
+ AngularInertia {
m11: self.m11 * self.m11 + self.m12 * self.m12 + self.m13 * self.m13,
m12: self.m11 * self.m12 + self.m12 * self.m22 + self.m13 * self.m23,
m13: self.m11 * self.m13 + self.m12 * self.m23 + self.m13 * self.m33,
@@ -860,10 +533,11 @@ impl WAngularInertia<f32> for SdpMatrix3<f32> {
}
}
-impl WAngularInertia<SimdFloat> for SdpMatrix3<SimdFloat> {
- type AngVector = Vector3<SimdFloat>;
- type LinVector = Vector3<SimdFloat>;
- type AngMatrix = Matrix3<SimdFloat>;
+#[cfg(feature = "dim3")]
+impl WAngularInertia<SimdReal> for AngularInertia<SimdReal> {
+ type AngVector = Vector3<SimdReal>;
+ type LinVector = Vector3<SimdReal>;
+ type AngMatrix = Matrix3<SimdReal>;
fn inverse(&self) -> Self {
let minor_m12_m23 = self.m22 * self.m33 - self.m23 * self.m23;
@@ -873,11 +547,11 @@ impl WAngularInertia<SimdFloat> for SdpMatrix3<SimdFloat> {
let determinant =
self.m11 * minor_m12_m23 - self.m12 * minor_m11_m23 + self.m13 * minor_m11_m22;
- let zero = <SimdFloat>::zero();
+ let zero = <SimdReal>::zero();
let is_zero = determinant.simd_eq(zero);
- let inv_det = (<SimdFloat>::one() / determinant).select(is_zero, zero);
+ let inv_det = (<SimdReal>::one() / determinant).select(is_zero, zero);
- SdpMatrix3 {
+ AngularInertia {
m11: minor_m12_m23 * inv_det,
m12: -minor_m11_m23 * inv_det,
m13: minor_m11_m22 * inv_det,
@@ -887,11 +561,11 @@ impl WAngularInertia<SimdFloat> for SdpMatrix3<SimdFloat> {
}
}
- fn transform_lin_vector(&self, v: Vector3<SimdFloat>) -> Vector3<SimdFloat> {
+ fn transform_lin_vector(&self, v: Vector3<SimdReal>) -> Vector3<SimdReal> {
self.transform_vector(v)
}
- fn transform_vector(&self, v: Vector3<SimdFloat>) -> Vector3<SimdFloat> {
+ fn transform_vector(&self, v: Vector3<SimdReal>) -> Vector3<SimdReal> {
let x = self.m11 * v.x + self.m12 * v.y + self.m13 * v.z;
let y = self.m12 * v.x + self.m22 * v.y + self.m23 * v.z;
let z = self.m13 * v.x + self.m23 * v.y + self.m33 * v.z;
@@ -899,7 +573,7 @@ impl WAngularInertia<SimdFloat> for SdpMatrix3<SimdFloat> {
}
fn squared(&self) -> Self {
- SdpMatrix3 {
+ AngularInertia {
m11: self.m11 * self.m11 + self.m12 * self.m12 + self.m13 * self.m13,
m12: self.m11 * self.m12 + self.m12 * self.m22 + self.m13 * self.m23,
m13: self.m11 * self.m13 + self.m12 * self.m23 + self.m13 * self.m33,
@@ -910,7 +584,7 @@ impl WAngularInertia<SimdFloat> for SdpMatrix3<SimdFloat> {
}
#[rustfmt::skip]
- fn into_matrix(self) -> Matrix3<SimdFloat> {
+ fn into_matrix(self) -> Matrix3<SimdReal> {
Matrix3::new(
self.m11, self.m12, self.m13,
self.m12, self.m22, self.m23,
@@ -919,7 +593,7 @@ impl WAngularInertia<SimdFloat> for SdpMatrix3<SimdFloat> {
}
#[rustfmt::skip]
- fn transform_matrix(&self, m: &Matrix3<SimdFloat>) -> Matrix3<SimdFloat> {
+ fn transform_matrix(&self, m: &Matrix3<SimdReal>) -> Matrix3<SimdReal> {
let x0 = self.m11 * m.m11 + self.m12 * m.m21 + self.m13 * m.m31;
let y0 = self.m12 * m.m11 + self.m22 * m.m21 + self.m23 * m.m31;
let z0 = self.m13 * m.m11 + self.m23 * m.m21 + self.m33 * m.m31;
@@ -940,206 +614,6 @@ impl WAngularInertia<SimdFloat> for SdpMatrix3<SimdFloat> {
}
}
-impl<T> From<[SdpMatrix3<f32>; 4]> for SdpMatrix3<T>
-where
- T: From<[f32; 4]>,
-{
- fn from(data: [SdpMatrix3<f32>; 4]) -> Self {
- SdpMatrix3 {
- m11: T::from([data[0].m11, data[1].m11, data[2].m11, data[3].m11]),
- m12: T::from([data[0].m12, data[1].m12, data[2].m12, data[3].m12]),
- m13: T::from([data[0].m13, data[1].m13, data[2].m13, data[3].m13]),
- m22: T::from([data[0].m22, data[1].m22, data[2].m22, data[3].m22]),
- m23: T::from([data[0].m23, data[1].m23, data[2].m23, data[3].m23]),
- m33: T::from([data[0].m33, data[1].m33, data[2].m33, data[3].m33]),
- }
- }
-}
-
-#[cfg(feature = "simd-nightly")]
-impl From<[SdpMatrix3<f32>; 8]> for SdpMatrix3<simba::simd::f32x8> {
- fn from(data: [SdpMatrix3<f32>; 8]) -> Self {
- SdpMatrix3 {
- m11: simba::simd::f32x8::from([
- data[0].m11,
- data[1].m11,
- data[2].m11,
- data[3].m11,
- data[4].m11,
- data[5].m11,
- data[6].m11,
- data[7].m11,
- ]),
- m12: simba::simd::f32x8::from([
- data[0].m12,
- data[1].m12,
- data[2].m12,
- data[3].m12,
- data[4].m12,
- data[5].m12,
- data[6].m12,
- data[7].m12,
- ]),
- m13: simba::simd::f32x8::from([
- data[0].m13,
- data[1].m13,
- data[2].m13,
- data[3].m13,
- data[4].m13,
- data[5].m13,
- data[6].m13,
- data[7].m13,
- ]),
- m22: simba::simd::f32x8::from([
- data[0].m22,
- data[1].m22,
- data[2].m22,
- data[3].m22,
- data[4].m22,
- data[5].m22,
- data[6].m22,
- data[7].m22,
- ]),
- m23: simba::simd::f32x8::from([
- data[0].m23,
- data[1].m23,
- data[2].m23,
- data[3].m23,
- data[4].m23,
- data[5].m23,
- data[6].m23,
- data[7].m23,
- ]),
- m33: simba::simd::f32x8::from([
- data[0].m33,
- data[1].m33,
- data[2].m33,
- data[3].m33,
- data[4].m33,
- data[5].m33,
- data[6].m33,
- data[7].m33,
- ]),
- }
- }
-}
-
-#[cfg(feature = "simd-nightly")]
-impl From<[SdpMatrix3<f32>; 16]> for SdpMatrix3<simba::simd::f32x16> {
- fn from(data: [SdpMatrix3<f32>; 16]) -> Self {
- SdpMatrix3 {
- m11: simba::simd::f32x16::from([
- data[0].m11,
- data[1].m11,
- data[2].m11,
- data[3].m11,
- data[4].m11,
- data[5].m11,
- data[6].m11,
- data[7].m11,
- data[8].m11,
- data[9].m11,
- data[10].m11,
- data[11].m11,
- data[12].m11,
- data[13].m11,
- data[14].m11,
- data[15].m11,
- ]),
- m12: simba::simd::f32x16::from([
- data[0].m12,
- data[1].m12,
- data[2].m12,
- data[3].m12,
- data[4].m12,
- data[5].m12,
- data[6].m12,
- data[7].m12,
- data[8].m12,
- data[9].m12,
- data[10].m12,
- data[11].m12,
- data[12].m12,
- data[13].m12,
- data[14].m12,
- data[15].m12,
- ]),
- m13: simba::simd::f32x16::from([
- data[0].m13,
- data[1].m13,
- data[2].m13,
- data[3].m13,
- data[4].m13,
- data[5].m13,
- data[6].m13,
- data[7].m13,
- data[8].m13,
- data[9].m13,
- data[10].m13,
- data[11].m13,
- data[12].m13,
- data[13].m13,
- data[14].m13,
- data[15].m13,
- ]),
- m22: simba::simd::f32x16::from([
- data[0].m22,
- data[1].m22,
- data[2].m22,
- data[3].m22,
- data[4].m22,
- data[5].m22,
- data[6].m22,
- data[7].m22,
- data[8].m22,
- data[9].m22,
- data[10].m22,
- data[11].m22,
- data[12].m22,
- data[13].m22,
- data[14].m22,
- data[15].m22,
- ]),
- m23: simba::simd::f32x16::from([
- data[0].m23,
- data[1].m23,
- data[2].m23,
- data[3].m23,
- data[4].m23,
- data[5].m23,
- data[6].m23,
- data[7].m23,
- data[8].m23,
- data[9].m23,
- data[10].m23,
- data[11].m23,
- data[12].m23,
- data[13].m23,
- data[14].m23,
- data[15].m23,
- ]),
- m33: simba::simd::f32x16::from([
- data[0].m33,
- data[1].m33,
- data[2].m33,
- data[3].m33,
- data[4].m33,
- data[5].m33,
- data[6].m33,
- data[7].m33,
- data[8].m33,
- data[9].m33,
- data[10].m33,
- data[11].m33,
- data[12].m33,
- data[13].m33,
- data[14].m33,
- data[15].m33,
- ]),
- }
- }
-}
-
// This is an RAII structure that enables flushing denormal numbers
// to zero, and automatically reseting previous flags once it is dropped.
#[derive(Clone, Debug, PartialEq, Eq)]