diff options
Diffstat (limited to 'src/dynamics')
37 files changed, 432 insertions, 425 deletions
diff --git a/src/dynamics/integration_parameters.rs b/src/dynamics/integration_parameters.rs index b31c3f6..706fb3f 100644 --- a/src/dynamics/integration_parameters.rs +++ b/src/dynamics/integration_parameters.rs @@ -1,11 +1,13 @@ +use crate::math::Real; + /// Parameters for a time-step of the physics engine. #[derive(Clone)] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] pub struct IntegrationParameters { /// The timestep length (default: `1.0 / 60.0`) - dt: f32, + dt: Real, /// The inverse of `dt`. - inv_dt: f32, + inv_dt: Real, // /// If `true` and if rapier is compiled with the `parallel` feature, this will enable rayon-based multithreading (default: `true`). // /// // /// This parameter is ignored if rapier is not compiled with is `parallel` feature. @@ -19,31 +21,31 @@ pub struct IntegrationParameters { pub return_after_ccd_substep: bool, /// The Error Reduction Parameter in `[0, 1]` is the proportion of /// the positional error to be corrected at each time step (default: `0.2`). - pub erp: f32, + pub erp: Real, /// The Error Reduction Parameter for joints in `[0, 1]` is the proportion of /// the positional error to be corrected at each time step (default: `0.2`). - pub joint_erp: f32, + pub joint_erp: Real, /// Each cached impulse are multiplied by this coefficient in `[0, 1]` /// when they are re-used to initialize the solver (default `1.0`). - pub warmstart_coeff: f32, + pub warmstart_coeff: Real, /// Contacts at points where the involved bodies have a relative /// velocity smaller than this threshold wont be affected by the restitution force (default: `1.0`). - pub restitution_velocity_threshold: f32, + pub restitution_velocity_threshold: Real, /// Amount of penetration the engine wont attempt to correct (default: `0.001m`). - pub allowed_linear_error: f32, + pub allowed_linear_error: Real, /// The maximal distance separating two objects that will generate predictive contacts (default: `0.002`). - pub prediction_distance: f32, + pub prediction_distance: Real, /// Amount of angular drift of joint limits the engine wont /// attempt to correct (default: `0.001rad`). - pub allowed_angular_error: f32, + pub allowed_angular_error: Real, /// Maximum linear correction during one step of the non-linear position solver (default: `0.2`). - pub max_linear_correction: f32, + pub max_linear_correction: Real, /// Maximum angular correction during one step of the non-linear position solver (default: `0.2`). - pub max_angular_correction: f32, + pub max_angular_correction: Real, /// Maximum nonlinear SOR-prox scaling parameter when the constraint /// correction direction is close to the kernel of the involved multibody's /// jacobian (default: `0.2`). - pub max_stabilization_multiplier: f32, + pub max_stabilization_multiplier: Real, /// Maximum number of iterations performed by the velocity constraints solver (default: `4`). pub max_velocity_iterations: usize, /// Maximum number of iterations performed by the position-based constraints solver (default: `1`). @@ -88,18 +90,18 @@ pub struct IntegrationParameters { impl IntegrationParameters { /// Creates a set of integration parameters with the given values. pub fn new( - dt: f32, + dt: Real, // multithreading_enabled: bool, - erp: f32, - joint_erp: f32, - warmstart_coeff: f32, - restitution_velocity_threshold: f32, - allowed_linear_error: f32, - allowed_angular_error: f32, - max_linear_correction: f32, - max_angular_correction: f32, - prediction_distance: f32, - max_stabilization_multiplier: f32, + erp: Real, + joint_erp: Real, + warmstart_coeff: Real, + restitution_velocity_threshold: Real, + allowed_linear_error: Real, + allowed_angular_error: Real, + max_linear_correction: Real, + max_angular_correction: Real, + prediction_distance: Real, + max_stabilization_multiplier: Real, max_velocity_iterations: usize, max_position_iterations: usize, max_ccd_position_iterations: usize, @@ -140,7 +142,7 @@ impl IntegrationParameters { /// The current time-stepping length. #[inline(always)] - pub fn dt(&self) -> f32 { + pub fn dt(&self) -> Real { self.dt } @@ -148,7 +150,7 @@ impl IntegrationParameters { /// /// This is zero if `self.dt` is zero. #[inline(always)] - pub fn inv_dt(&self) -> f32 { + pub fn inv_dt(&self) -> Real { self.inv_dt } @@ -156,7 +158,7 @@ impl IntegrationParameters { /// /// This automatically recompute `self.inv_dt`. #[inline] - pub fn set_dt(&mut self, dt: f32) { + pub fn set_dt(&mut self, dt: Real) { assert!(dt >= 0.0, "The time-stepping length cannot be negative."); self.dt = dt; if dt == 0.0 { @@ -170,7 +172,7 @@ impl IntegrationParameters { /// /// This automatically recompute `self.dt`. #[inline] - pub fn set_inv_dt(&mut self, inv_dt: f32) { + pub fn set_inv_dt(&mut self, inv_dt: Real) { self.inv_dt = inv_dt; if inv_dt == 0.0 { self.dt = 0.0 diff --git a/src/dynamics/joint/ball_joint.rs b/src/dynamics/joint/ball_joint.rs index ec255d4..82e2a10 100644 --- a/src/dynamics/joint/ball_joint.rs +++ b/src/dynamics/joint/ball_joint.rs @@ -1,29 +1,29 @@ -use crate::math::{Point, Vector}; +use crate::math::{Point, Real, Vector}; #[derive(Copy, Clone)] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] /// A joint that removes all relative linear motion between a pair of points on two bodies. pub struct BallJoint { /// Where the ball joint is attached on the first body, expressed in the first body local frame. - pub local_anchor1: Point<f32>, + pub local_anchor1: Point<Real>, /// Where the ball joint is attached on the first body, expressed in the first body local frame. - pub local_anchor2: Point<f32>, + pub local_anchor2: Point<Real>, /// The impulse applied by this joint on the first body. /// /// The impulse applied to the second body is given by `-impulse`. - pub impulse: Vector<f32>, + pub impulse: Vector<Real>, } impl BallJoint { /// Creates a new Ball joint from two anchors given on the local spaces of the respective bodies. - pub fn new(local_anchor1: Point<f32>, local_anchor2: Point<f32>) -> Self { + pub fn new(local_anchor1: Point<Real>, local_anchor2: Point<Real>) -> Self { Self::with_impulse(local_anchor1, local_anchor2, Vector::zeros()) } pub(crate) fn with_impulse( - local_anchor1: Point<f32>, - local_anchor2: Point<f32>, - impulse: Vector<f32>, + local_anchor1: Point<Real>, + local_anchor2: Point<Real>, + impulse: Vector<Real>, ) -> Self { Self { local_anchor1, diff --git a/src/dynamics/joint/fixed_joint.rs b/src/dynamics/joint/fixed_joint.rs index 0731cfb..359e14a 100644 --- a/src/dynamics/joint/fixed_joint.rs +++ b/src/dynamics/joint/fixed_joint.rs @@ -1,4 +1,4 @@ -use crate::math::{Isometry, SpacialVector}; +use crate::math::{Isometry, Real, SpacialVector}; #[derive(Copy, Clone)] #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))] @@ -8,22 +8,22 @@ use crate::math::{Isometry, SpacialVector}; pub struct FixedJoint { /// The frame of reference for the first body affected by this joint, expressed in the local frame /// of the first body. - pub local_anchor1: Isometry<f32>, + pub local_anchor1: Isometry<Real>, /// The frame of reference for the second body affected by this joint, expressed in the local frame /// of the first body. - pub local_anchor2: Isometry<f32>, + pub local_anchor2: Isometry<Real>, /// The impulse applied to the first body affected by this joint. /// /// The impulse applied to the second body affected by this joint is given by `-impulse`. /// This combines both linear and angular impulses: /// - In 2D, `impulse.xy()` gives the linear impulse, and `impulse.z` the angular impulse. /// - In 3D, `impulse.xyz()` gives the linear impulse, and `(impulse[3], impulse[4], impulse[5])` the angular impulse. - pub impulse: SpacialVector<f32>, + pub impulse: SpacialVector<Real>, } impl FixedJoint { /// Creates a new fixed joint from the frames of reference of both bodies. - pub fn new(local_anchor1: Isometry<f32>, local_anchor2: Isometry<f32>) -> Self { + pub fn new(local_anchor1: Isometry<Real>, local_anchor2: Isometry<Real>) -> Self { Self { local_anchor1, local_anchor2, diff --git a/src/dynamics/joint/prismatic_joint.rs b/src/dynamics/joint/prismatic_joint.rs index a6fd558..174ce79 100644 --- a/src/dynamics/joint/prismatic_joint.rs +++ b/src/dynamics/joint/prismatic_joint.rs @@ -1,4 +1,4 @@ -use crate::math::{Isometry, Point, Vector, DIM}; +use crate::math::{Isometry, Point, Real, Vector, DIM}; use crate::utils::WBasis; use na::Unit; #[cfg(feature = "dim2")] @@ -11,35 +11,35 @@ use na::Vector5; /// A joint that removes all relative motion between two bodies, except for the translations along one axis. pub struct PrismaticJoint { /// Where the prismatic joint is attached on the first body, expressed in the local space of the first attached body. - pub local_anchor1: Point<f32>, + pub local_anchor1: Point<Real>, /// Where the prismatic joint is attached on the second body, expressed in the local space of the second attached body. - pub local_anchor2: Point<f32>, - pub(crate) local_axis1: Unit<Vector<f32>>, - pub(crate) local_axis2: Unit<Vector<f32>>, - pub(crate) basis1: [Vector<f32>; DIM - 1], - pub(crate) basis2: [Vector<f32>; DIM - 1], + pub local_anchor2: Point<Real>, + pub(crate) local_axis1: Unit<Vector<Real>>, + pub(crate) local_axis2: Unit<Vector<Real>>, + pub(crate) basis1: [Vector<Real>; DIM - 1], + pub(crate) basis2: [Vector<Real>; DIM - 1], /// The impulse applied by this joint on the first body. /// /// The impulse applied to the second body is given by `-impulse`. #[cfg(feature = "dim3")] - pub impulse: Vector5<f32>, + pub impulse: Vector5<Real>, /// The impulse applied by this joint on the first body. /// /// The impulse applied to the second body is given by `-impulse`. #[cfg(feature = "dim2")] - pub impulse: Vector2<f32>, + pub impulse: Vector2<Real>, /// Whether or not this joint should enforce translational limits along its axis. pub limits_enabled: bool, /// The min an max relative position of the attached bodies along this joint's axis. - pub limits: [f32; 2], + pub limits: [Real; 2], /// The impulse applied by this joint on the first body to enforce the position limit along this joint's axis. /// /// The impulse applied to the second body is given by `-impulse`. - pub limits_impulse: f32, + pub limits_impulse: Real, // pub motor_enabled: bool, - // pub target_motor_vel: f32, - // pub max_motor_impulse: f32, - // pub motor_impulse: f32, + // pub target_motor_vel: Real, + // pub max_motor_impulse: Real, + // pub motor_impulse: Real, } impl PrismaticJoint { @@ -47,10 +47,10 @@ impl PrismaticJoint { /// in the local-space of the affected bodies. #[cfg(feature = "dim2")] pub fn new( - local_anchor1: Point<f32>, - local_axis1: Unit<Vector<f32>>, - local_anchor2: Point<f32>, - local_axis2: Unit<Vector<f32>>, + local_anchor1: Point<Real>, + local_axis1: Unit<Vector<Real>>, + local_anchor2: Point<Real>, + local_axis2: Unit<Vector<Real>>, ) -> Self { Self { local_anchor1, @@ -61,11 +61,11 @@ impl PrismaticJoint { basis2: local_axis2.orthonormal_basis(), impulse: na::zero(), limits_enabled: false, - limits: [-f32::MAX, f32::MAX], + limits: [-Real::MAX, Real::MAX], limits_impulse: 0.0, // motor_enabled: false, // target_motor_vel: 0.0, - // max_motor_impulse: f32::MAX, + // max_motor_impulse: Real::MAX, // motor_impulse: 0.0, } } @@ -78,12 +78,12 @@ impl PrismaticJoint { /// computed arbitrarily. #[cfg(feature = "dim3")] pub fn new( - local_anchor1: Point<f32>, - local_axis1: Unit<Vector<f32>>, - local_tangent1: Vector<f32>, - local_anchor2: Point<f32>, - local_axis2: Unit<Vector<f32>>, - local_tangent2: Vector<f32>, + local_anchor1: Point<Real>, + local_axis1: Unit<Vector<Real>>, + local_tangent1: Vector<Real>, + local_anchor2: Point<Real>, + local_axis2: Unit<Vector<Real>>, + local_tangent2: Vector<Real>, ) -> Self { let basis1 = if let Some(local_bitangent1) = Unit::try_new(local_axis1.cross(&local_tangent1), 1.0e-3) @@ -116,28 +116,28 @@ impl PrismaticJoint { basis2, impulse: na::zero(), limits_enabled: false, - limits: [-f32::MAX, f32::MAX], + limits: [-Real::MAX, Real::MAX], limits_impulse: 0.0, // motor_enabled: false, // target_motor_vel: 0.0, - // max_motor_impulse: f32::MAX, + // max_motor_impulse: Real::MAX, // motor_impulse: 0.0, } } /// The local axis of this joint, expressed in the local-space of the first attached body. - pub fn local_axis1(&self) -> Unit<Vector<f32>> { + pub fn local_axis1(&self) -> Unit<Vector<Real>> { self.local_axis1 } /// The local axis of this joint, expressed in the local-space of the second attached body. - pub fn local_axis2(&self) -> Unit<Vector<f32>> { + pub fn local_axis2(&self) -> Unit<Vector<Real>> { self.local_axis2 } // FIXME: precompute this? #[cfg(feature = "dim2")] - pub(crate) fn local_frame1(&self) -> Isometry<f32> { + pub(crate) fn local_frame1(&self) -> Isometry<Real> { use na::{Matrix2, Rotation2, UnitComplex}; let mat = Matrix2::from_columns(&[self.local_axis1.into_inner(), self.basis1[0]]); @@ -149,7 +149,7 @@ impl PrismaticJoint { // FIXME: precompute this? #[cfg(feature = "dim2")] - pub(crate) fn local_frame2(&self) -> Isometry<f32> { + pub(crate) fn local_frame2(&self) -> Isometry<Real> { use na::{Matrix2, Rotation2, UnitComplex}; let mat = Matrix2::from_columns(&[self.local_axis2.into_inner(), self.basis2[0]]); @@ -161,7 +161,7 @@ impl PrismaticJoint { // FIXME: precompute this? #[cfg(feature = "dim3")] - pub(crate) fn local_frame1(&self) -> Isometry<f32> { + pub(crate) fn local_frame1(&self) -> Isometry<Real> { use na::{Matrix3, Rotation3, UnitQuaternion}; let mat = Matrix3::from_columns(&[ @@ -177,7 +177,7 @@ impl PrismaticJoint { // FIXME: precompute this? #[cfg(feature = "dim3")] - pub(crate) fn local_frame2(&self) -> Isometry<f32> { + pub(crate) fn local_frame2(&self) -> Isometry<Real> { use na::{Matrix3, Rotation3, UnitQuaternion}; let mat = Matrix3::from_columns(&[ diff --git a/src/dynamics/joint/revolute_joint.rs b/src/dynamics/joint/revolute_joint.rs index cdb424b..ad7db0d 100644 --- a/src/dynamics/joint/revolute_joint.rs +++ b/src/dynamics/joint/revolute_joint.rs @@ -1,4 +1,4 @@ -use crate::math::{Point, Vector}; +use crate::math::{Point, Real, Vector}; use crate::utils::WBasis; use na::{Unit, Vector5}; @@ -7,31 +7,31 @@ use na::{Unit, Vector5}; /// A joint that removes all relative motion between two bodies, except for the rotations along one axis. pub struct RevoluteJoint { /// Where the revolute joint is attached on the first body, expressed in the local space of the first attached body. - pub local_anchor1: Point<f32>, + pub local_anchor1: Point<Real>, /// Where the revolute joint is attached on the second body, expressed in the local space of the second attached body. - pub local_anchor2: Point<f32>, + pub local_anchor2: Point<Real>, /// The rotation axis of this revolute joint expressed in the local space of the first attached body. - pub local_axis1: Unit<Vector<f32>>, + pub local_axis1: Unit<Vector<Real>>, /// The rotation axis of this revolute joint expressed in the local space of the second attached body. - pub local_axis2: Unit<Vector<f32>>, + pub local_axis2: Unit<Vector<Real>>, /// The basis orthonormal to `local_axis1`, expressed in the local space of the first attached body. - pub basis1: [Vector<f32>; 2], + pub basis1: [Vector<Real>; 2], /// The basis orthonormal to `local_axis2`, expressed in the local space of the second attached body. - pub basis2: [Vector<f32>; 2], + pub basis2: [Vector<Real>; 2], /// The impulse applied by this joint on the first body. /// /// The impulse applied to the second body is given by `-impulse`. - pub impulse: Vector5<f32>, + pub impulse: Vector5<Real>, } impl RevoluteJoint { /// Creates a new revolute joint with the given point of applications and axis, all expressed /// in the local-space of the affected bodies. pub fn new( - local_anchor1: Point<f32>, - local_axis1: Unit<Vector<f32>>, - local_anchor2: Point<f32>, - local_axis2: Unit<Vector<f32>>, + local_anchor1: Point<Real>, + local_axis1: Unit<Vector<Real>>, + local_anchor2: Point<Real>, + local_axis2: Unit<Vector<Real>>, ) -> Self { Self { local_anchor1, diff --git a/src/dynamics/rigid_body.rs b/src/dynamics/rigid_body.rs index 5128b6f..683cca8 100644 --- a/src/dynamics/rigid_body.rs +++ b/src/dynamics/rigid_body.rs @@ -2,7 +2,9 @@ use crate::dynamics::MassProperties; use crate::geometry::{ Collider, ColliderHandle, ColliderSet, InteractionGraph, RigidBodyGraphIndex, }; -use crate::math::{AngVector, AngularInertia, Isometry, Point, Rotation, Translation, Vector}; +use crate::math::{ + AngVector, AngularInertia, Isometry, Point, Real, Rotation, Translation, Vector, +}; use crate::utils::{self, WCross, WDot}; use num::Zero; @@ -54,24 +56,24 @@ bitflags::bitflags! { #[derive(Debug, Clone)] pub struct RigidBody { /// The world-space position of the rigid-body. - pub(crate) position: Isometry<f32>, - pub(crate) predicted_position: Isometry<f32>, + pub(crate) position: Isometry<Real>, + pub(crate) predicted_position: Isometry<Real>, /// The local mass properties of the rigid-body. pub(crate) mass_properties: MassProperties, /// The world-space center of mass of the rigid-body. - pub world_com: Point<f32>, + pub world_com: Point<Real>, /// The square-root of the inverse angular inertia tensor of the rigid-body. - pub world_inv_inertia_sqrt: AngularInertia<f32>, + pub world_inv_inertia_sqrt: AngularInertia<Real>, /// The linear velocity of the rigid-body. - pub(crate) linvel: Vector<f32>, + pub(crate) linvel: Vector<Real>, /// The angular velocity of the rigid-body. - pub(crate) angvel: AngVector<f32>, + pub(crate) angvel: AngVector<Real>, /// Damping factor for gradually slowing down the translational motion of the rigid-body. - pub linear_damping: f32, + pub linear_damping: Real, /// Damping factor for gradually slowing down the angular motion of the rigid-body. - pub angular_damping: f32, - pub(crate) linacc: Vector<f32>, - pub(crate) angacc: AngVector<f32>, + pub angular_damping: Real, + pub(crate) linacc: Vector<Real>, + pub(crate) angacc: AngVector<Real>, pub(crate) colliders: Vec<ColliderHandle>, /// Whether or not this rigid-body is sleeping. pub activation: ActivationStatus, @@ -125,7 +127,7 @@ impl RigidBody { self.active_set_timestamp = 0; } - pub(crate) fn integrate_accelerations(&mut self, dt: f32, gravity: Vector<f32>) { + pub(crate) fn integrate_accelerations(&mut self, dt: Real, gravity: Vector<Real>) { if self.mass_properties.inv_mass != 0.0 { self.linvel += (gravity + self.linacc) * dt; self.angvel += self.angacc * dt; @@ -184,7 +186,7 @@ impl RigidBody { /// The mass of this rigid body. /// /// Returns zero if this rigid body has an infinite mass. - pub fn mass(&self) -> f32 { + pub fn mass(&self) -> Real { utils::inv(self.mass_properties.inv_mass) } @@ -193,7 +195,7 @@ impl RigidBody { /// If this rigid-body is kinematic this value is set by the `set_next_kinematic_position` /// method and is used for estimating the kinematic body velocity at the next timestep. /// For non-kinematic bodies, this value is currently unspecified. - pub fn predicted_position(&self) -> &Isometry<f32> { + pub fn predicted_position(&self) -> &Isometry<Real> { &self.predicted_position } @@ -311,13 +313,13 @@ impl RigidBody { !self.linvel.is_zero() || !self.angvel.is_zero() } - fn integrate_velocity(&self, dt: f32) -> Isometry<f32> { + fn integrate_velocity(&self, dt: Real) -> Isometry<Real> { let com = &self.position * self.mass_properties.local_com; let shift = Translation::from(com.coords); shift * Isometry::new(self.linvel * dt, self.angvel * dt) * shift.inverse() } - pub(crate) fn integrate(&mut self, dt: f32) { + pub(crate) fn integrate(&mut self, dt: Real) { // TODO: do we want to apply damping before or after the velocity integration? self.linvel *= 1.0 / (1.0 + dt * self.linear_damping); self.angvel *= 1.0 / (1.0 + dt * self.angular_damping); @@ -326,19 +328,19 @@ impl RigidBody { } /// The linear velocity of this rigid-body. - pub fn linvel(&self) -> &Vector<f32> { + pub fn linvel(&self) -> &Vector<Real> { &self.linvel } /// The angular velocity of this rigid-body. #[cfg(feature = "dim2")] - pub fn angvel(&self) -> f32 { + pub fn angvel(&self) -> Real { self.angvel } /// The angular velocity of this rigid-body. #[cfg(feature = "dim3")] - pub fn angvel(&self) -> &Vector<f32> { + pub fn angvel(&self) -> &Vector<Real> { &self.angvel } @@ -346,7 +348,7 @@ impl RigidBody { /// /// If `wake_up` is `true` then the rigid-body will be woken up if it was /// put to sleep because it did not move for a while. - pub fn set_linvel(&mut self, linvel: Vector<f32>, wake_up: bool) { + pub fn set_linvel(&mut self, linvel: Vector<Real>, wake_up: bool) { self.linvel = linvel; if self.is_dynamic() && wake_up { @@ -359,7 +361,7 @@ impl RigidBody { /// If `wake_up` is `true` then the rigid-body will be woken up if it was /// put to sleep because it did not move for a while. #[cfg(feature = "dim2")] - pub fn set_angvel(&mut self, angvel: f32, wake_up: bool) { + pub fn set_angvel(&mut self, angvel: Real, wake_up: bool) { self.angvel = angvel; if self.is_dynamic() && wake_up { @@ -372,7 +374,7 @@ impl RigidBody { /// If `wake_up` is `true` then the rigid-body will be woken up if it was /// put to sleep because it did not move for a while. #[cfg(feature = "dim3")] - pub fn set_angvel(&mut self, angvel: Vector<f32>, wake_up: bool) { + pub fn set_angvel(&mut self, angvel: Vector<Real>, wake_up: bool) { self.angvel = angvel; if self.is_dynamic() && wake_up { @@ -381,7 +383,7 @@ impl RigidBody { } /// The world-space position of this rigid-body. - pub fn position(&self) -> &Isometry<f32> { + pub fn position(&self) -> &Isometry<Real> { &self.position } @@ -394,7 +396,7 @@ impl RigidBody { /// /// If `wake_up` is `true` then the rigid-body will be woken up if it was /// put to sleep because it did not move for a while. - pub fn set_position(&mut self, pos: Isometry<f32>, wake_up: bool) { + pub fn set_position(&mut self, pos: Isometry<Real>, wake_up: bool) { self.changes.insert(RigidBodyChanges::POSITION); self.set_position_internal(pos); @@ -404,7 +406,7 @@ impl RigidBody { } } - pub(crate) fn set_position_internal(&mut self, pos: Isometry<f32>) { + pub(crate) fn set_position_internal(&mut self, pos: Isometry<Real>) { self.position = pos; // TODO: update the predicted position for dynamic bodies too? @@ -414,13 +416,13 @@ impl RigidBody { } /// If this rigid body is kinematic, sets its future position after the next timestep integration. - pub fn set_next_kinematic_position(&mut self, pos: Isometry<f32>) { + pub fn set_next_kinematic_position(&mut self, pos: Isometry<Real>) { if self.is_kinematic() { self.predicted_position = pos; } } - pub(crate) fn compute_velocity_from_predicted_position(&mut self, inv_dt: f32) { + pub(crate) fn compute_velocity_from_predicted_position(&mut self, inv_dt: Real) { let dpos = self.predicted_position * self.position.inverse(); #[cfg(feature = "dim2")] { @@ -433,7 +435,7 @@ impl RigidBody { self.linvel = dpos.translation.vector * inv_dt; } - pub(crate) fn update_predicted_position(&mut self, dt: f32) { + pub(crate) fn update_predicted_position(&mut self, dt: Real) { self.predicted_position = self.integrate_velocity(dt) * self.position; } @@ -448,7 +450,7 @@ impl RigidBody { * Application of forces/impulses. */ /// Applies a force at the center-of-mass of this rigid-body. - pub fn apply_force(&mut self, force: Vector<f32>, wake_up: bool) { + pub fn apply_force(&mut self, force: Vector<Real>, wake_up: bool) { if self.body_status == BodyStatus::Dynamic { self.linacc += force * self.mass_properties.inv_mass; @@ -459,7 +461,7 @@ |
