aboutsummaryrefslogtreecommitdiff
path: root/src/geometry/polygonal_feature_map.rs
diff options
context:
space:
mode:
Diffstat (limited to 'src/geometry/polygonal_feature_map.rs')
-rw-r--r--src/geometry/polygonal_feature_map.rs132
1 files changed, 0 insertions, 132 deletions
diff --git a/src/geometry/polygonal_feature_map.rs b/src/geometry/polygonal_feature_map.rs
deleted file mode 100644
index 2a8fc8d..0000000
--- a/src/geometry/polygonal_feature_map.rs
+++ /dev/null
@@ -1,132 +0,0 @@
-use crate::geometry::PolyhedronFace;
-use crate::geometry::{cuboid, Cone, Cuboid, Cylinder, Segment, Triangle};
-use crate::math::{Point, Vector};
-use approx::AbsDiffEq;
-use na::{Unit, Vector2};
-use ncollide::shape::SupportMap;
-
-/// Trait implemented by convex shapes with features with polyhedral approximations.
-pub trait PolygonalFeatureMap: SupportMap<f32> {
- fn local_support_feature(&self, dir: &Unit<Vector<f32>>, out_feature: &mut PolyhedronFace);
-}
-
-impl PolygonalFeatureMap for Segment {
- fn local_support_feature(&self, _: &Unit<Vector<f32>>, out_feature: &mut PolyhedronFace) {
- *out_feature = PolyhedronFace::from(*self);
- }
-}
-
-impl PolygonalFeatureMap for Triangle {
- fn local_support_feature(&self, _: &Unit<Vector<f32>>, out_feature: &mut PolyhedronFace) {
- *out_feature = PolyhedronFace::from(*self);
- }
-}
-
-impl PolygonalFeatureMap for Cuboid {
- fn local_support_feature(&self, dir: &Unit<Vector<f32>>, out_feature: &mut PolyhedronFace) {
- let face = cuboid::support_face(self, **dir);
- *out_feature = PolyhedronFace::from(face);
- }
-}
-
-impl PolygonalFeatureMap for Cylinder {
- fn local_support_feature(&self, dir: &Unit<Vector<f32>>, out_features: &mut PolyhedronFace) {
- // About feature ids.
- // At all times, we consider our cylinder to be approximated as follows:
- // - The curved part is approximated by a single segment.
- // - Each flat cap of the cylinder is approximated by a square.
- // - The curved-part segment has a feature ID of 0, and its endpoint with negative
- // `y` coordinate has an ID of 1.
- // - The bottom cap has its vertices with feature ID of 1,3,5,7 (in counter-clockwise order
- // when looking at the cap with an eye looking towards +y).
- // - The bottom cap has its four edge feature IDs of 2,4,6,8, in counter-clockwise order.
- // - The bottom cap has its face feature ID of 9.
- // - The feature IDs of the top cap are the same as the bottom cap to which we add 10.
- // So its vertices have IDs 11,13,15,17, its edges 12,14,16,18, and its face 19.
- // - Note that at all times, one of each cap's vertices are the same as the curved-part
- // segment endpoints.
- let dir2 = Vector2::new(dir.x, dir.z)
- .try_normalize(f32::default_epsilon())
- .unwrap_or(Vector2::x());
-
- if dir.y.abs() < 0.5 {
- // We return a segment lying on the cylinder's curved part.
- out_features.vertices[0] = Point::new(
- dir2.x * self.radius,
- -self.half_height,
- dir2.y * self.radius,
- );
- out_features.vertices[1] =
- Point::new(dir2.x * self.radius, self.half_height, dir2.y * self.radius);
- out_features.eids = [0, 0, 0, 0];
- out_features.fid = 0;
- out_features.num_vertices = 2;
- out_features.vids = [1, 11, 11, 11];
- } else {
- // We return a square approximation of the cylinder cap.
- let y = self.half_height.copysign(dir.y);
- out_features.vertices[0] = Point::new(dir2.x * self.radius, y, dir2.y * self.radius);
- out_features.vertices[1] = Point::new(-dir2.y * self.radius, y, dir2.x * self.radius);
- out_features.vertices[2] = Point::new(-dir2.x * self.radius, y, -dir2.y * self.radius);
- out_features.vertices[3] = Point::new(dir2.y * self.radius, y, -dir2.x * self.radius);
-
- if dir.y < 0.0 {
- out_features.eids = [2, 4, 6, 8];
- out_features.fid = 9;
- out_features.num_vertices = 4;
- out_features.vids = [1, 3, 5, 7];
- } else {
- out_features.eids = [12, 14, 16, 18];
- out_features.fid = 19;
- out_features.num_vertices = 4;
- out_features.vids = [11, 13, 15, 17];
- }
- }
- }
-}
-
-impl PolygonalFeatureMap for Cone {
- fn local_support_feature(&self, dir: &Unit<Vector<f32>>, out_features: &mut PolyhedronFace) {
- // About feature ids. It is very similar to the feature ids of cylinders.
- // At all times, we consider our cone to be approximated as follows:
- // - The curved part is approximated by a single segment.
- // - The flat cap of the cone is approximated by a square.
- // - The curved-part segment has a feature ID of 0, and its endpoint with negative
- // `y` coordinate has an ID of 1.
- // - The bottom cap has its vertices with feature ID of 1,3,5,7 (in counter-clockwise order
- // when looking at the cap with an eye looking towards +y).
- // - The bottom cap has its four edge feature IDs of 2,4,6,8, in counter-clockwise order.
- // - The bottom cap has its face feature ID of 9.
- // - Note that at all times, one of the cap's vertices are the same as the curved-part
- // segment endpoints.
- let dir2 = Vector2::new(dir.x, dir.z)
- .try_normalize(f32::default_epsilon())
- .unwrap_or(Vector2::x());
-
- if dir.y > 0.0 {
- // We return a segment lying on the cone's curved part.
- out_features.vertices[0] = Point::new(
- dir2.x * self.radius,
- -self.half_height,
- dir2.y * self.radius,
- );
- out_features.vertices[1] = Point::new(0.0, self.half_height, 0.0);
- out_features.eids = [0, 0, 0, 0];
- out_features.fid = 0;
- out_features.num_vertices = 2;
- out_features.vids = [1, 11, 11, 11];
- } else {
- // We return a square approximation of the cone cap.
- let y = -self.half_height;
- out_features.vertices[0] = Point::new(dir2.x * self.radius, y, dir2.y * self.radius);
- out_features.vertices[1] = Point::new(-dir2.y * self.radius, y, dir2.x * self.radius);
- out_features.vertices[2] = Point::new(-dir2.x * self.radius, y, -dir2.y * self.radius);
- out_features.vertices[3] = Point::new(dir2.y * self.radius, y, -dir2.x * self.radius);
-
- out_features.eids = [2, 4, 6, 8];
- out_features.fid = 9;
- out_features.num_vertices = 4;
- out_features.vids = [1, 3, 5, 7];
- }
- }
-}